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INTRODUCTION 
  

The Australian Government’s Onshore Energy Security 

Program (2006-2011) was completed recently by Geoscience 

Australia (GA). The five year program provides pre-

competitive geoscience data and value-added products for 

assessment on hydrocarbon, uranium, geothermal energy and 

mineral resource potential. As part of the five year program, 

Geoscience Australia has acquired magnetotelluric (MT) data 

along 12 deep crustal seismic reflection transects across 

potential mineral provinces and frontier sedimentary basins in 

Australia (Figure 1). MT data were collected using AusScope 

instrumentation through ANSIR (National Research Facility 

for Earth Sounding) agreement and by contract. Broadband 

and long-period MT data were acquired at more than 640 

stations over 3700 km in distance along these seismic 

transects in collaboration with state and territory geoscience 

agencies and the University of Adelaide.  

 

The MT method complements the deep seismic reflection 

method by providing information of Earth electrical resistivity 

(or conductivity) distribution from near-surface to upper 

mantle. The MT data, along with deep seismic reflection data, 

potential field data of magnetic and gravity, and geological 

data have provided multi-disciplinary investigations of crustal 

architecture, and energy and mineral potential. These 

geophysical data have significantly improved the quality of 

regional geological interpretations. They have enabled a new 

understanding of the crustal architectures and geodynamics, as 

well as the mineral and energy potential in these regions. 

 

The MT and seismic data are available from GA’s website 

(http://www.ga.gov.au/minerals/projects/current-

projects/seismic-acquisition-processing.html) 
 

The results and interpretations of the seismic and MT surveys 

are available in several workshop reports. 

(http://www.ga.gov.au/minerals/projects/current-

projects/onshore-energy-geodynamic-framework.html) 

 
Figure 1. The location of MT surveys (black lines) on a 

surface geological map of Australia.  

 

METHOD AND RESULTS 

 
The MT method utilises time-dependent variations of the 

Earth's natural magnetic and electric fields to infer Earth’s 

interior resistivity distribution from depths of tens of meters to 

hundreds of kilometers (Tikhonov, 1950; Cagniard, 1953; 

Vozoff, 1991). The variations of Earth’s natural magnetic 

fields over a range of frequencies diffuse into the Earth and 

induce electric fields over a range of depths, which have 
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characteristics depending upon the frequencies and the 

resistivity distribution of the Earth. The variations of the 

magnetic field are measured simultaneously by two or three 

orthogonal induction coils and a three component fluxgate 

magnetometer, while the electric field responses are measured 

by orthogonal pairs of electrodes. 

 

Broadband data were measured with a frequency bandwidth of 

0.01 Hz to 250 Hz for gaining information within the upper 

crust. Long-period data were measured with a frequency 

bandwidth of 0.1 Hz to 0.0001 Hz for identifying features in 

the lower crust and upper mantle. 

 

MT time series data were processed using the robust algorithm 

BIRRP (Chave, 1987; Chave, 2004) with remote reference 

data when available. The aim of the process was to remove 

outliers in the time series measurements, produce a robust 

estimation of the transfer function, and obtain a series of 

power spectral estimates of the electric and magnetic fields.  

Finally, the apparent resistivity and phase as a function of 

frequency were calculated. The broadband and long-period 

data from coincident locations were merged into single 

responses, which were covering periods of about 0.004 s to 

10,000 s (Figure 2). The processed data is available in 

industry standard Electrical Data Interchange (EDI) file.  

 
Figure 2.  An example of merged apparent resistivity and 

phase curves of TM mode (triangle) and TE mode (circle).  

 

Several techniques have been used for the dimensionality and 

geoelectric strike analysis. The WALDIM method (Marti, 

2005) was used to examine the statistical distribution of 

dimensionality and distortion. The phase tensor approach 

(Caldwell, 2004) was also used to determine the spatial 

correlation, period consistency of the strike and the 

dimensionality (Figure 3). The induction arrows or Parkinson 

Arrows (Parkinson, 1959) were calculated from the complex 

ratio of vertical to horizontal magnetic fields in the frequency 

domain. They provided information for lateral geological 

structures and information of geoelectric strike. 

 

Two dimensional MT inversion used the non-linear conjugate 

gradient algorithm of Rodi (2001) to produce the MT 

resistivity models. The resistivity characteristics from these 

models have been used to extract geological structural 

information of the continental lithosphere. They have 

provided complementary information for the multi-

disciplinary geological interpretations based on the seismic 

reflection data. The joint interpretation reduced the ambiguity 

of one type dataset and produced a more consistent and 

reliable interpretation, especially, for regions that have 

complex geological structures. 

 

Multi-disciplinary investigations are demonstrated by data 

acquired in Queensland across the eastern Mt Isa region; in 

South Australia across Gawler Craton, Officer Basin, 

Musgrave Province, Amadeus Basin (GOMA survey); and in 

Georgina-Arunta region of Northern Territory. Significant 

correlations were apparent between the different geophysical 

data for mapping geological structures and in the assessment 

of energy and mineral potential. 

 

 
 

Figure 3. Phase tensor ellipse plots for each site from 

GA08-OM1 GOMA MT survey on a solid geological map, 

highest frequency closest to the site. The ellipses are 

invariant representation of phase values (size), skew values 

(colour) and direction of current flow (axis). 

 
For example, in the Georgina-Arunta survey (Figure 4), 

spatially correlated geological features have been suggested by 

both the seismic image and the MT model (Korsch, 2011). 

First, the Amadeus Basin and the Georgina Basin have been 

well defined by the seismic image as well as the MT model, 

which shows high conductive zones of these Basins. Secondly, 

some geological boundaries are clearly seen in the MT model 

as well as in the seismic image, e.g., the boundary between the 

Aileron Province and the Davenport Province at about CDP 

7000, and the boundary between the Aileron Province and the 

Irindina Province at about CDP 10000. The south dipping 

crustal resistivity structure matches a south dipping seismic 

structure. Gravity and magnetic anomalies from this region 

correlate with this feature.  Thirdly, the MT model and seismic 

image indicate that the crust of Davenport Province can be 

divided into three regions: the Georgina Basin down to about 

2.5 km in the MT model; a low seismic reflectivity zone 

corresponds to the high resistivity zones from about 2.5 km to 

about 15 km; and a high seismic reflectivity zone is coincident 

with a conductivity zone from about 15 km to 40 km in depth.  
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The MT model provides additional information for 

understanding the geodynamic, and energy and mineral 

potential.  For instance, the MT model appears two larger 

crustal conductivity anomalies at about CDP 7000 and CDP 

16000. Even though the significance of these anomalies is not 

fully understood yet, it may have mineral resource and 

hydrocarbon implication.  

 

CONCLUSIONS 
 

Broadband and long-period MT data have been acquired by 

Geoscience Australia along deep seismic reflection transects 

in Queensland, South Australia, Northern Territory, and 

Western Australia. Data have been processed and released to 

the public. These data provide pre-competitive information to 

industry and researchers for multi-disciplinary geological 

interpretations. The joint interpretation approach which 

utilises the different geophysical data provides an effective 

and reliable tool for interpretation.  
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Figures 4. Two dimensional MT preliminary model with geological interpretation and seismic reflection image from 

Georgina-Arunta survey (Line 09GA-GA1) 

 

 


