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INTRODUCTION 
  

Airborne EM data sets generally consist of millions of 

amplitude values as a function of time, sorted and averaged 

into amplitude decays as a function of easting and northing on 

sets of survey lines. In mineral exploration “State of the art” 

interpretation has progressed from “manual bump finding and 

conductor quality estimation” in the early days (Palacky and 

West, 1991) to full 3D interpretation (Macnae et al., 2012).  

Both approaches have difficulties in that they take significant 

time and the results depend significantly on the modeller and 

interpreter (choice of modelling code e.g. Maxwell, UBC, 

TechnoImaging, incorporation of geological constraints etc.). 

In hydrogeophysics, the prevalence of horizontal conductors 

has led to 1D inversions, potentially with lateral or spatial 

constraints as the “State of the art” for AEM modelling 

(Auken et al. 2005, Viezzoli et al., 2008). 

 

There have in parallel been significant efforts made into fast 

and automated modelling/imaging of AEM data.  These 

started with “Conductivity Depth Imaging” introduced for the 

Spectrem system by Macnae et al. (1991), with conductance-

depth estimation based on the 19th century receding image 

theory of Maxwell (Macnae and Lamontagne, 198. After 

transform, single point soundings were stitched together to get 

2D conductivity-depth values. Many other researchers 

advanced 1D inversion, and other approximate conductivity-

depth transforms were developed post the 1987 work of 

Macnae and Lamontagne. Some of the more interesting but to 

date “commercially unsuccessful” were the introduction of 

fast 3D anomaly fitting methods by Macnae et al (1998); 

Sattel and Reid (2006) and Schaa and Fullagar (2010). 

 

This paper looks at spectral methods as a way to speed up 

forward EM modelling and inversion.  To my knowledge, the 

first use of spectral methods in EM modelling was the PhD 

thesis of Peter Annan (1974).  Program “Plate” developed at 

the University of Toronto was for many years an approximate 

EM model used in forward modelling of EM induction in 

rectangular plate.  Figure 1 presents contours of 

eigenpotentials derived by Annan showing current streamlines 

in plates.  With the limitations of VAX computers in the 

1970’s, the accuracy of Plate was intentionally limited to just a 

few eigenpotentials (15) die to speed considerations.  Since 

then, computers have improved several orders of magnitude in 

speed and available memory, and coding greatly simplified. 

The equivalent to Annan’s eigenpotentials can now be created 

in 5 or 6 lines of MATLAB code, with disk conductors as easy 

to compute as plates  (Trefethan, 2000), and a modelling 

profile calculated with simple coupling and reciprocity. 

 
Figure 1: Subset of Annan’s (1974) eigenpotentials  

 

METHOD AND RESULTS 
 

EM induces current in a confined conductor within a 

surrounding medium through two mechanisms: 1) vortex 

induction where currents are confined to the target conductor 

and circulate around changing magnetic fields and 2) galvanic 

pickup where host currents are channelled into and then out of 

the target conductor. 

 

Programs Plate, MultiLoop I and II and Maxwell all provide 

quick and approximate forward models for vortex induction, 
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with the approximations from discretisation in the case of 

Plate, and the over-simplified geometry of the ribbons in 

MultiLoop and Maxwell.  Any forward model can be used in 

an inversion, and this has been implemented for Maxwell. 

 

The starting point of the advance reported here is 

implementation of Annan’s solution in MATLAB as a forward 

model, based on the modifications of the code of Trefethan for 

eigenpotentials on confined surfaces obeying the Laplace 

equation.  Note that, under the quasistatic approximation that 

speed of light delays of the order 3 to 10 s per km can be 

ignored, and that the vortex currents obey Laplace in 2D, with 

0 current crossing the boundary. 

 

Figs 2 (the slowest decaying) & 3 (the first 25) present the 

current eigenpotentials from Trefethen (2000) program 

example 23 over a square plate. 

 
Figure 2: The current eigenpotentials with slowest decay in 

a square plate. Note that the second and third current 

patterns are degenerate with the same eigenvalue. 

 

 
Figure 3: Current eigenpotentials as in Fig 2, presented as 

a colour amplitude image on an equispaced grid. The 

potentials were calculated at 225 Chebychev collocation 

points and then interpolated (sub-sampled) to the images 

shown. 

 

Based on the MATLAB implementation, calculation of the 

eigenpotentials and eigenvalues (related to decay rate or 

characteristic frequency) takes of the order of a millisecond, 

and only needs to be done once for any specific aspect ratio of 

length/width of the plate.  It is trivial to compute 

eigenpotentials for a disk by the same method, and this 

computation is illustrated in Trefethan (2000).  Figure 4 

presents the eigencurrents for a disk for comparison with those 

in a square plate. 

 

 

 

 
Figure 4: Eigenpotentials for a conducting disk. Many but 

not all of these are similar to those in the square plate (Fig 

3). Note while potentials 1 to 4 (top rows) look very similar, 

the sign of an eigenpotential is arbitrary; eigenpotential 6 

has reversed sign between the plate and the disk, with 

colours reversed.  

 

There are several additional steps in calculating an EM 

response from eigencurrents.  

1) Choose a (small) set of collocation points where the 

primary field is to be evaluated on the plate 

(Chebychev, Galerkin, equispaced), and calculate 

the eigenpotential at these points, and the time 

constant for that eigenpotential. 

2) At each station: 

a. Take the dot product of the primary field 

normal to the plate with the eigenpotential 

at each collocation point. 

b. Take the dot product of the reciprocal 

receiver field normal to the plate with the 

eigenpotential at each collocation point 

(redundant for coincident loop systems). 

c. Multiply the Tx-Rx factors for each 

eigenpotential. 

d. Multiply each result by the decay of its 

eigenpotential, and sum. 

3) Plot a profile. 
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Figure 5 presents a typical forward model for the VTEM 

response at 101 fiducials, calculated in about 1 ms, or a few 

tens of microseconds with a GPU, using the eigenpotentials 

shown in Figure 8 (at the end of the paper).  This model is of 

course one for a resistive host with no conductive cover.  It is 

easy to modify this response for a target located beneath a 

conductive overburden, using Maxwell’s receding image 

theory.  A forward model in this case can be calculated with a 

small time increase, from an additional 1 to 10 ms depending 

on the relative contrast of the overburden conductance and the 

target conductance.  Disc models are as quick to calculate as 

plate models.  I anticipate the Sphere and ellipsoidal models 

should be equally easy (Smith and Wasylechko, 2012) but this 

has not been attempted at this time 

 
Figure 5.  Forward model using spectral methods of the of-

time dB/dt decay over a conductive plate in a resistive host, 

with a VTEM loop overflying at 40 m altitude. 

 

The next step in a mode general 3D forward model is to allow 

for current gathering. Annan (1974) established the spectral 

method methodology for this to be added for conductors 

within one uniform layer, but it has not yet been implemented 

in the MATLAB code.   

 

Standard target detection methodologies can be run based on 

say the criteria of Sattel and Reid (2006), and there are many 

off-the-shelf inversion methods available.  For the purposes of 

illustration, I have used fmincon from the MATLAB 

optimisation toolbox, an algorithm allowing simple constraints 

to fit synthetic and field data using the spectral forward 

models.  To speed up inversion, the predicted inductive and 

resistive limits (King and Macnae, 2001, Schaa and Fullagar, 

2010) of the data over the target are first extracted and 

inverted, with further speed up from the use of spatial 

moments (Macnae et al, 1998) 

 

Examples of an inversion of a synthetic decaying response 

plus noise shown in Figure 7. The target has a horizontal disc, 

representing for example the weathered top of a kimberlite. A 

background response plus noise was added before running the 

inversion. Testing on field data has commenced, but is not 

reported in this extended abstract. 

 

Limitations to the efficiency of this code are that it does not 

take into account SPM or IP effects, which should be stripped 

from data prior to inversion.  The quasi-static assumptions in 

the spectral method imply that the model is not useful at 

frequencies over a few hundred kHz.   

 

 
 

Figure 6: Test inversion of synthetic VTEM data over a 

300 m wide disc target. A backghround response was 

included in the synthetic data, but not the inversion model. 

 

The eigenpotential method of Annan (1974) also permitted the 

modelling of current gathering effects when the plate was 

located within a conductive background. (Figure 7).  Because 

the current gathering eigencurrents are orthogonal to the 

vortex currents, forward modelling and inversion should be 

rapid for these more complex models.  The process to be 

tested will involve 1) inverting using vortex currents as 

illustrated in Figure 6 in an initial inversion, 2) using 1D 

methods to predict a background conductivity at the depth of 

the fitted target and 3) refitting with current gathering 

eigenpotentials permitted, coupled to the electric primary 

field. 

 

 
 

Figure 7: Annan (1974), p 140-141 sample eigencurrents 

modelling the effects of current gathering (Eigencurrent 1) 

as well as vortex induction  (Eigencurrent 6). 
 

CONCLUSIONS 
 

The spectral method for the solution of EM vortex and 

galvanic current gathering, first introduced by Annan (1974) is 

easy to implement in MATLAB in a few lines of code using 

existing library functions and published recipes. Forward 

models run in milliseconds, of tens of microseconds on an 

inexpensive GPU. Canned MATLAB optimisation packages 

duplicate the functionality of existing geophysical inversion 

codes, and a virtually complete 3D inversion package can be 

implemented in a couple of pages of code.  The approximate 

inversion of a single anomaly using a GPU card can take a few 

milliseconds. 
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Figure 8.  The full set of 60 eigenpotentials used for forward and inverse modelling of a plate with 2:1 aspect 

ratio.  Program PLATE was restricted to 15 eigenpotentials. 


