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INTRODUCTION 
  

In conventional magnetic modelling, self-demagnetisation and 

interaction between magnetic bodies is ignored. This is 

perfectly acceptable for weakly magnetised rocks. However, 

in highly magnetised rocks, self-demagnetisation and 

interactions are important determinants of the measured 

magnetic response. Self-demagnetisation reduces the intensity 

of transverse magnetisation, and hence alters the orientation of 

resultant magnetisation.  The effect of self-demagnetisation 

can be calculated analytically for homogeneous ellipsoids 

(Clark et al, 1986), but to the best of our knowledge no 

algorithm has hitherto been available for general 3D 

modelling and inversion of highly magnetic bodies. 

Accordingly, we have developed such an algorithm.  

 

The new algorithm computes H-field perturbations at the 

model cell centres in two stages: initialisation and 

optimisation. During initialisation, a demagnetisation tensor is 

estimated for each cell, from which a first estimate for the H-

field perturbation is derived. During optimisation, the H-field 

field estimate is refined iteratively via an inversion procedure.  

Remanence is taken into account as well as induced 

magnetisation.  Once the H-field has been determined at the 

centre of each cell, modelling and inversion proceed using 

existing routines.  

 

The new algorithm has been incorporated in the VPmg 

package, designed for geologically constrained 3D modelling 

and inversion (Fullagar & Pears, 2007; Fullagar et al., 2008). 

Geological models are categorical, insofar as the sub-surface 

is divided into rock type domains. Whereas most inversion 

programs operate on “property only” models, VPmg models 

are attributed with rock type as well as property. Inverting 

geological models is a natural way to integrate geology and 

geophysics, and also offer a number of practical advantages. 

In particular, the topological significance of geological 

boundaries is maintained, permitting geometry inversion as 

well as property inversion. In addition, the inversion can be 

restricted to selected geological units of prime interest. 

 

The ability to accurately compute the magnetic responses of 

highly magnetic terranes is vital for quantitative 

interpretation, providing the link between geological model 

and geophysical data. In particular, modelling self-

demagnetisation and interactions is essential in order to 

calculate the net magnetisation anywhere in the sub-surface 

since magnetisation depends on body shape, orientation, and 

placement relative to other magnetic bodies, in addition to 

local induced and remanent magnetisation.  

 

Recently there has been considerable interest in inversion 

which generates “magnetisation models” rather than 

susceptibility models. Inverting for magnetisation is 

conceptually attractive insofar as it circumvents the need, 

during computation, (a) to determine remanence a priori, and 

(b) to account for self-demagnetisation and interactions. 

However, the effect of geometry on magnetisation can pose 

SUMMARY 
 

Self-demagnetisation can significantly reduce the 

amplitude and modify the shape of the magnetic response 

from highly magnetic bodies. For quasi-planar bodies, 

only the transverse component of magnetisation is 

reduced, with the result that the direction of 

magnetisation rotates towards the plane of the body.  

Furthermore, when highly magnetic bodies are in close 

proximity, the assumption of uniform inducing field is 

violated. Rather, highly magnetic bodies can modify the 

local magnetic field appreciably, with the result that the 

magnetisation induced in one body is affected by the 

magnetisations induced in all the others. It is important to 

take such interactions between highly magnetic bodies 

into account.  

 

Potential field modelling and inversion software “VPmg” 

has been upgraded to account for self demagnetisation 

and interaction between magnetic bodies. The algorithm 

computes H-field perturbations at the model cell centres 

in two stages: initialisation and optimisation. During 

initialisation, a demagnetisation tensor is estimated for 

each cell, from which a first estimate for the H-field 

perturbation is derived. During optimisation, the H-field 

field estimate is refined iteratively via an inversion 

procedure.  Remanence can be taken into account.   

  

The algorithm has been validated for homogeneous 

spheres, spheroids, slabs, and cylinders. It has also 

reproduced magnetic interactions between two horizontal 

cylinders for the case published by Hjelt (1973). Explicit 

verification for complex heterogeneous bodies requires a 

suitable independent algorithm for benchmarking.  

 

The application to inversion in highly magnetic 

environments is illustrated on field data examples. 
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problems during interpretation of “magnetisation models”, 

since the inverted magnetisation cannot be validated against 

measurements of susceptibility and/or remanence.  Net in situ 

magnetisation is not a rock property and therefore a 

magnetisation model is one step further removed from 

geology than a susceptibility model. This “ground truthing” 

issue would arise even if magnetisation inversion were 

unique; in fact magnetisation inversion is, like susceptibility 

inversion, subject to severe non-uniqueness (Figure 1).  

 

 
 

Figure 1:  Three different tabular bodies, with 

magnetisations as indicated by the arrows, give rise to the 

same magnetic data (Clark et al, 1992).    

 

In this paper the theoretical basis for the new algorithm, and 

its validation against analytic solutions, are described. It is 

then applied to the inversion of field data from Western 

Australia. 

 

 

METHODOLOGY 

 

The algorithm computes a vector adjustment, H
r

∆ , for the H-
field at the centre of each model cell, prior to computing the 

external magnetic field in the usual fashion. Magnetisation is 

assumed uniform within each cell; this “standard assumption” 

in magnetic modelling is reasonable if cells are sufficiently 

small. The H-vector adjustment proceeds in two stages: 

initialisation and optimisation. During initialisation, a 

demagnetisation tensor is estimated for each highly 

magnetised cell, assuming identical magnetisation in all such 

cells. This yields a first estimate for H
r

∆ . During 

optimisation, the H
r

∆  vector is refined iteratively via 

inversion.   

 

Inside a uniformly magnetised ellipsoid, the perturbation field, 

H
r

∆ , can be related to the magnetisation, J
r
, via a 

demagnetisation tensor, N
~
:  

JNH
rr

⋅−=∆
~

    (1) 

 

Let M
r
 denotes the “intrinsic magnetisation”, i.e. sum of 

induced and remanent magnetisation vectors, IJ
r
and RJ

r
 

respectively. Then 

      RRI JHkJJM
rrrrr

+=+= 0
, (2)  

where k is the susceptibility and where 
0H

r
 denotes the 

ambient geomagnetic field.  

The net magnetisation when demagnetisation is considered is 

(Clark & Emerson, 1999) 

( ) MNkIJ
rr 1~~ −

+=   (3) 

 

The demagnetisation tensor concept has been extended to an 

arbitrary distribution of magnetised prismatic cells by Newell 

et al (1993). They separate the perturbation field into two 

parts, due to self-demagnetisation and mutual 

demagnetisation, i.e. interaction. Thus  

 

  ∑
≠

−−=∆

ij
j

jijiiii JNJNH
rrr ~~   (4)  

where 
iiN
~  is the self-demagnetisation tensor for the ith cell, 

with magnetisation  
iJ
r
, and where 

ijN
~  are mutual 

demagnetisation tensors between the ith and jth cells. The 

trace of 
iiN
~  is 1, while the trace of any 

ijN
~
 is 0. Newell et al 

provide formulae for all the tensor components, but 

implementing their method directly for a large number of cells 

is prohibitively slow. 

 

If the magnetisations of all cells are identical, then (4) reduces 

to 

JNNJH i

j

iji

rrr ~~
−=−=∆ ∑

  (5) 

where iN
~
 denotes the demagnetisation tensor for the ith cell. 

Therefore, assuming a uniform magnetisation, the tensor 

components for each highly magnetic cell can be calculated if 

the perturbation fields, comprising both demagnetisation and 

interaction contributions, are known at the cell centres. The 

perturbation fields can be computed by forward modelling 

three times, assuming uniform magnetisation in the x-, y-, and 

z-directions in turn. The calculation for each coordinate 

direction defines a row of the tensor. Given the tensors iN
~
, 

the net magnetisation for each cell can then be determined by 

substituting into (3). 

 

For heterogeneous bodies, this initialisation stage provides a 

useful first approximation to H
r

∆ . During the subsequent 

optimisation stage the perturbation field estimates are updated 

via an iterative inversion procedure. The inversion terminates 

when the computed H
r

∆  are consistent with the net 

magnetisations, i.e. when 

 

HkMJ
rrr

∆+= .  (6) 

 

In order to avoid needless computation, the demagnetising 

field calculations are restricted to high magnetisation cells. At 

present the threshold is hardwired as ( ) 1.01 ≥+Qk  SI, where 

Q is the Koenigsberger ratio for the geological unit to which 

the cell belongs. If the magnetisation is identical in all high 

magnetisation cells, the tensor initialisation is virtually 

“exact”, and there is no need for optimisation.  

 

Given the net magnetisation vector for each cell, forward 

modelling and inversion can proceed using existing 

algorithms, but with the difference that the inverse problem is 

non-linear: the resultant magnetisation depends on geometry 

in highly magnetic environments.  
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VALIDATION 
 

The algorithm has been validated for homogeneous spheres, 

spheroids, slabs, and cylinders. The validity of the algorithm 

for ellipsoidal bodies has been established via comparison 

with the analytic solution (Clark et al, 1986). TMI responses 

computed with the new algorithm for a high susceptibility (1.5 

SI) oblate spheroid model are compared with analytic values 

in Figure 2. The agreement is excellent.  

 

The new algorithm has also reproduced the results of Hjelt 

(1973) for two parallel circular cylinders in close proximity 

(Figure 3). This represents a test of magnetic interaction as 

well as demagnetisation.  

 

Validating the program for more complex situations has 

proved difficult because we have been unable to locate 

published examples.    

 

 

 
 

Figure 2:  N-S TMI profiles over a vertical oblate 

spheroid, susceptibility 1.5 SI, in a non-magnetic host. The 

analytic curve (labelled “Prismatic”) agrees closely with 

the curve generated with the new algorithm (labelled 

“VPmg”). Ambient field is 55000 nT with declination 45
o
 

and -60
o
 inclination.  

 

 
 

Figure 3a:  N-S profiles for vertical component of 

induction, Bz, over two horizontal circular cylinders, 

susceptibility 0.628 SI, in a non-magnetic host (after Hjelt, 

1973).  

 

 

 
Figure 3b:  Bz profiles computed over Hjelt’s parallel 

cylinders using the forward algorithm describe here. The 

red curve takes no account of self-demagnetisation or 

interactions; the green curve  accounts for self-

demagnetisation; the blue curve takes both self-

demagnetisation and interaction into account. Ambient 

field is 51000 nT with declination 0
o
 and +75

o
 inclination.  

 

 

FIELD EXAMPLE 

 

The new algorithm has been applied to field data recorded 

over magnetite-rich stratigraphy at Southdown, in SW 

Western Australia (Figure 4).  

 

 

Figure 4:  Location map of the South down area in 

Western Australia. 

 

A starting model comprising 4 simple rectangular bodies 

(Figure 5) was presented to VPmg for forward modelling and 

inversion to update the model geometry while taking self 

demagnetisation (and interaction) into account.  Three of the 

magnetic bodies has magnetic susceptibilities greater than 2SI. 

   

 
Figure 5:  Perspective view of the 4 rectangular bodies (5x 

vertical exaggeration).  Magnetic data is draped above the 

top of bodies for visualisation purposes.  The purpose slice 

depicts the location of the section shown in Figure 5.  
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For a north-south profile across one of the magnetic units the 

fit is greatly improved after adjustment of the shape of a 

dipping slab (Figure 6).  To better fit the data, VPmg 

geometry inversion has adjusted the parametric shape to be 

more elongated.   

 

 

  
Figure 6: Observed (black) and VPmg calculated (red) 

magnetic responses of the starting model (left) and the 

inverted model (right).  Magnetic body in the cross-section 

has a magnetic susceptibility of 2.34SI (5x vertical 

exaggeration). 

 

 

CONCLUSIONS 

 

Self-demagnetisation and interactions between magnetic 

bodies cannot be ignored when modelling in highly magnetic 

terranes. The resultant in situ magnetisation is a function of 

shape, orientation, and relative positions of magnetic bodies as 

well as their intrinsic (induced + remanent) magnetisations. 

We have developed a 3D algorithm which takes these non-

linear effects into account during both forward modelling and 

geologically-constrained inversion. The algorithm provides a 

means for relating in situ magnetisation to measurements of 

susceptibility and remanence. The algorithm has been 

validated against analytical solutions, and its utility has been 

demonstrated via application to interpretation of field data 

from Western Australia.    

 

  

REFERENCES 

 

Clark, D.A., Saul, S.J., and Emerson, D.W., 1986, Magnetic 

and gravity anomalies of a triaxial ellipsoid: Exploration 

Geophysics, 17, 189-200.  

 

Clark, D.A., French, D.H., Lackie, M.A., and Schmidt, P.W., 

1992, Rock magnetism and magnetkc petrology applied to 

geological interpretation of magnetic surveys: CSIRO 

Exploration Geoscience Report 303R.  

 

Clark, D.A., and Emerson, D.W., 1999, Self-demagnetisation: 

ASEG Preview, No. 79, 22-25. 

 

Fullagar, P.K., and Pears, G.A., 2007, Towards geologically  

realistic inversion: Proceedings of Exploration ’07, Fifth  

Decennial International Conference on Mineral Exploration, 

Toronto. 

 

Fullagar, P.K., Pears, G.A., and McMonnies, B., 2008, 

Constrained inversion of geological surfaces - pushing the 

boundaries: The Leading Edge, 27, 98-105. 

 

Hjelt, S.E., 1973, Combined magnetostatic anomalies of two 

parallel circular cylinders: in Interpretation of Borehole 

Magnetic Data and Some Problems of Magnetometry, S.E. 

Hjelt and A.Ph. Phokin (eds.), Report No. 1, Department of 

Geophysics, University of Oulu, Finland, 1981.  

 

Newell, A.J., Williams, W.,  and Dunlop, D.J. , 1993, A 

generalization of the demagnetizing tensor for non-uniform 

magnetization: J. Geophysical Research - Solid Earth, 98, 

9551–9555. 

 

 

 

 


