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INTRODUCTION 

  

The problem of  the inversion of geophysical data is finding 

the minimum of a suitable cost function subject to constraints 

defined by partial differential equations (PDEs). The cost 

function measures the data misfit and the variation of the 

physical property across the domain. In general, this problem 

is equivalent to a system of coupled PDEs for three unknowns 

– the physical properties (e.g. density and susceptibility), the 

observation (e.g. gravity and magnetic field) and the 

Lagrangean multipliers introducing the PDE constraints. 

Therefore it is appropriate to use well established PDE 

solution methods such as the finite element method (FEM) 

(Zienkiewicz et al. 2005) to solve inversion problems.    

It is common practice to state the inversion problem as a 

quadratic programming problem using Green's functions to 

explicitly calculate the sensitivity matrix of the observations 

from the physical property, for instance see (Li and 

Oldenburg, 1996).  A particular limitation of the usage of the 

Green's functions approach is the fact that its application is 

limited to linear inversion problems and cannot be applied to 

more advanced forward models as for instance required for 

large values of susceptibility, see Lelivre and Oldenburg 2006.  

In this paper we discuss how the FEM can be applied to 

solving inversion problems using the adjoint-state method, see 

Plessix 2006. We will in particular discuss the application 

case of joint inversion of gravitational and magnetic data for 

which the inversion problem becomes non-linear. The key 

idea is to formulate the solution process in terms of PDEs, 

PDEs solution and an appropriate inner product rather using a 

linear algebra formulation.  A second key component is the 

usage of the FEM to solve the PDEs. We will show that the 

FEM method works with the adjoint-state method in a natural 

way. Moreover, FEM can easily parallelized using the domain 

decomposition approach distribution cells across different 

compute nodes. In contrast to the commonly used approach to 

split the work across compute nodes through data tiling   

domain decomposition is applied during the PDEs solution 

process which leads to a more efficient inversion process.  

 

PROBLEM 
 

The geophysical properties within a domain are described by 

the level set function    kρ,=m,m=m 10  where ρ  and 

k described the gravitational and magnetic properties, 

respectively.  The task is to find the level set function m for 

which the cost function 

 

             1

crossmaggravreg
m,mJ+kJ+ρJ+mJ=mJ 0  

   

takes the minimum. In this cost function we use the H1-

regularisation: 

  dxm+m=mJ
reg 2
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where the integral is calculated over the region of interest  and  

. denotes the Euclidean norm. For the sake of simpler 

presentation L2-regularisation and weighting factors are 

dropped but can be considered in the approach discussed in 

this paper. To align the contours for density and susceptibility  

we use the cross-gradient gradient term  
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see Gallardo et al.(20005). The miss-fit functions for the 

gravity ĝ and magnetic data B̂  are given as 
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with spatially variable weighting factors g
w  and B

w  

allowing for the location, error and direction of measurements. 

The gravity field g  and magnetic field B  are given as the 

negative gradient of the gravity and magnetic scalar potentials 

SUMMARY 

 

The program package escript is a module in python for 

solving mathematical modelling problems. It is based on 

the finite element method (FEM) and scales on compute 

clusters for thousands of cores. In this paper we will 

discuss an extension to escript for solving large-scale 

inversion problems, in particular the joint inversion of 

magnetic and gravity data. In contrast to conventional 

inversion programs escript avoids the assemblage of the  

-in general- dense  sensitivity matrix which is 

problematic when it comes to large-scale problems. 

Moreover, we will show how the FEM approach can 

easily be used to solve the adjoined forward problems 

required for the gradient calculation of the cost function. 

We will demonstrate the application of the algorithm for 

field data using hundreds of cores. 
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  and ψ , respectively. Both potentials are given as the 

solution of a PDE with appropriate boundary conditions.  

When using the FEM the PDEs are solved as variational 

equations.  For the gravity potential   this takes the form   

 

dxρv=dxv     

 

which needs to be fulfilled for all smooth test functions v  

with appropriate boundary conditions. Similarly with the 

background magnetic field b
B  the magnetic potential  ψ  is 

given as the solution of  

 

dxBvk=dxψv
b

   

 

for all smooth test functions v  .  

The domain of the inversion covers the subsurface where 

density and susceptibility are calculated as well as the region 

above the surface where measurements have been taken. In 

practice it is assumed that the region is bounded so it needs to 

be chosen sufficiently large to avoid boundary effects on the 

inversion results for the region of interest.   
 

 

SOLUTION METHOD 

 
We use the quasi-Newton scheme in form of the the limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

method, see Nocedal (1980), to solve the minimisation 

problem for m . The method requires the gradient J  of the 

cost function and an appropriate inner product .. ,  such that 

for a level set increment  δm   

 

       αo+mJδm,α+mJ=δmα+mJ   

 

for scalar 0α . For the cost function J the directional 

derivative is given in the form  

 

dxδmX+δmX+δmY+δmY=Jδm, 1100110   0   

 

with suitable coefficients 0Y  , 1Y , 0X  and 1X  which are 

functions of the level set function and of their locations within 

the region of interest. From the regularisation and cross 

gradient term one can easily show that 
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The gradient of gravity data misfit  grav
J  and magnetic data 

misfit function mag
J  define the coefficient  0Y  and 1Y , 

respectively.  We use the adjoint-state method to calculate 

these gradients, see Plessix (2006): With  

   gg
wggw=Y ˆˆ

0   the directional derivative of the gravity 

component is given as 

 

dxδY=J,δm
grav

0
ˆ

0    

 

where   is given as the solution of the variational equation  

 

dxδmv=dxδv 0    

 

for all smooth test function v. In order to get an explicit 

representation of grav
J  increment  for the gradient 

potential needs to be translated into a increment 0δm  for the 

level set function. To do this we solve the adjoint problem to 

calculate the function 0Y from 0Ŷ : 

 

dxvY=dxYv   00
ˆ  

 

for all smooth test function v. From this equation and the 

definition of the scalar potential increment   we get 

 

 dxδY=dxδY=dxδmY 0
ˆ

000     

 

and finally 

 

dxδmY=J,δm 0

grav

0  0 . 

 

Similarly, one gets for the magnetic component 

 

 dxYδm=J,δm 1

mag

1 1  

 

where  b
BY=Y  11  ,    BB

wBBw=Y ˆˆ
1   and 

 

dxvY=dxYv   11
ˆ  

 

for all smooth test function v.  

 

We also need to provide an approximation of the Hessian 

operator of the cost function:  

 

    δmHmJδm+mJ   

 

For the L-BFGS  one needs to provide the level set increment  

δm  for  the difference of two cost function gradients as the 

solution of the equation above. Again the equation is solved in 

variational form: 

 

dxvX+vX+vY+vY=mHv, 101 10100   

 

for all smooth test function v where coefficients 0Y  , 1Y , 0X  

and 1X   represent the difference of two  cost function 

gradients. In theory the Hessian operator can be determined 

easily by calculating the partial derivatives of the coefficients 

with respect to the level set function m . For coefficient 0Y  

and 1Y  this is not a straightforward procedure as the adjoint 

problems come into the way. However, as it is sufficient to 
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provide an approximation of level set increment  δm   we 

ignore contributions from the data misfit to the cost function. 

For this assumption we get  
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where summation over the indices  p, i, q and j is performed 

and  piqjA  is the partial derivative of piX  with respect to 

j

q

x
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.  In most practical applications weighting of cost 

function components will be chosen  to emphasise the data 

misfit. For these cases dropping contributions from the data 

misfit in the Hessian operator will lead to an inferior search 

direction for L-BFGS and as a consequence to a larger number 

of iteration steps. In principle it is possible to include 

contributions from data misfit. This however would require 

the solution of several coupled differential equations. At this 

point we assume that the additional solution costs for this 

would exceed compute time reductions through a decrease of 

the number of  L-BFGS iterations. 

 

IMPLEMENTATION 

 

We use the escript modelling environment (Gross at al. 2007) 

in python (van Rossum et al 2001) to implement the  L-BFGS 

based joint inversion.   escript is built to solve complex 

mathematical models. Its core is a python  class to define a 

template for linear, second order PDEs which in variational 

form for a single PDE and a scalar solution u is given as  
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for all smooth test function v. Summation over the indices  i 

and j is performed. The functions Aij , Bi, Ci, D, Xi and Y are 

the PDE coefficients. For the general form we refer to Gross 

et.al (2010).   

Users write python scripts to define the coefficients as 

expressions of  parameters, input data and solutions of other 

PDEs. The latter allows for the solution of time-dependent, 

non-linear problems and for coupling various models in a 

single simulation script. At run time the coefficients are 

evaluated and passed on to the FEM solver returning an 

(approximate) solution of the PDE.  It is particular strength of 

escript that the user does not have to be aware of how values 

for the coefficients and solution are stored. Data structures and 

– on parallel computers – distribution of data and meshes (or 

grids) are not visible to the user on the  python level. This 

allows developing complex models without programming 

skills and running them on parallel computers without time-

consuming program modifications.  

The L-BFGS based inversion process as outlined above can 

easily implemented using  escript.  For each evaluation of the 

cost function J  the  gravity and magnetic scalar potentials 
ϕ

 

and 
ψ

 are calculated using the escript PDE class. For the 

calculation of the cost function gradient the corresponding 

adjoint problems are solved in variational form  using escript. 

As shown above the (approximate) evaluation of the inverse of 

the Hessian operator can be expressed as the solution of PDE 

in variational form which again can be easily implemented 

using escript's PDE solver. Notice that for this a system of 

tightly coupled PDE needs to be solved.  

 

When running escript across different compute nodes in a 

compute cluster  (Bischof  2008) escript distributes the grid 

cells  (or mesh in case of more complex geometries) across the 

available compute nodes  to achieve an equal distribution of  

work load and to minimise the costs for data exchange 

between compute nodes as required during the PDE solves. 

The PDE solution as well as the update of the physical 

properties is performed in parallel  across all cells.  

 

 

 

Figure 1: Result from a joint inversion calculation of the Willowra data set. Contour lines 

show the distribution of the susceptibility. Colour shows the density distribution. Both 

distributions are shown at horizontal plain just below ground level. 

Figure 2: Result from gravity inversion of the Willowra data set.  Colour shows the density 

distribution  at horizontal plain just below ground level. 
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 CASE STUDY 

 
In this section we show some preliminary results from a joint 

inversion of gravity and magnetic data from the Willowra 

region in central Australia. Data are given at a resolution of 

about 800m covering a region of about 540km by 1500km.  

Vertically the domain extends to a depth of 40km below and 

height of 6km above ground level. Figure 1 shows the results 

for a joint inversion of the data using about 27 Million cells. 

The inversion used a total 384 cores on a SGI Altix ICE 8200 

EX compute cluster for about 1.5 days. The work was 

distributed across 48 compute nodes while on each compute 

additional parallelization across local cores has been used via 

threading, see Gross et.al (2010). At this point we are still in 

the process to identify appropriate weighting factors for the 

various components of the cost function in particular for the 

cross gradient term controlling the alignment of density and 

susceptibility contours.  Figure 2 shows the results form the 

inversion of the gravity data only. For this inversion 54 

Million cells have been used. The visualisation shows the 

additional padding area added to the region covered by the 

data in order to reduce the impact of boundary effects onto the 

interior region.  

 

CONCLUSIONS 
 

The FEM approach and its implementation in escript based on 

the adjoint-state method can easily be extended to other 

inversion problems such as seismic and MT data. When it 

comes to solve large scale problems the Hessian operator 

which inverse plays the role of a preconditioner is of critical 

importance to make inversions feasible even when more 

compute power is used. Our experiments with very large data 

set indicate that dropping contribution from the data misfit in 

the Hessian operator approximation can cause problems for 

convergence in particular if a good inversion result requires 

weighting factors  for the data misfit. However at this point it 

is not clear which in the general is the most efficient approach 

Hessian operator approximation. 
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