
 
 

ASEG-PESA 2015 – Perth, Australia   1 

 

Linking electrical and hydraulic conductivity through models of random 

resistor networks 

 
Alison Kirkby    Graham Heinson 
University of Adelaide  University of Adelaide 

North Terrace, Adelaide 5005  North Terrace, Adelaide 5005 

Alison.Kirkby@adelaide.edu.au Graham.Heinson@adelaide.edu.au 

 

 

 

 

INTRODUCTION 
  

The ability to predict crustal permeability distribution is 

important for a number of resource industries, for example, 

geothermal energy and oil and gas. Geothermal energy targets 

require both elevated temperatures at accessible depths, and 

sufficient permeability to sustain adequate flow rates for 

commercial production. Likewise, understanding the 

permeability distribution is vital to accurately model the 

performance of an oil or gas reservoir (Babadagli et al, 2004). 

However, permeability often varies by orders of magnitude 

over short distances. Therefore, not only is it difficult to 

predict permeability from the surface, but also, even when 

drillholes are available these may not be adequate to 

characterise nearby targets. 

 

Electromagnetic methods 

 

Electromagnetic techniques have been applied extensively to 

exploration for conventional geothermal targets (e.g., Munoz, 

2014; Pellerin et al., 1996). In conventional geothermal systems, 

the target is a strong electrical conductivity anomaly resulting 

from a clay cap caused by alteration of the host rock to 

electrically conductive clay minerals (Ussher et al., 2000; 

Wright et al., 1985}. However, unconventional geothermal 

energy targets such as those being investigated in Australia 

(e.g., Barnett and Evans, 2010,; Hogarth et al., 2013; Reid and 

Messeiller, 2013) are generally deeper and are located in a range 

of geological settings, making the application of a single 

exploration model difficult. In addition, the rocks in many of 

the sedimentary basins in Australia are highly electrically 

conductive (e.g., Peacock et al., 2013) and therefore high 

conductivities resulting from, for example, saline fluids or clay 

alteration may not produce strong conductivity anomalies. For 

these reasons, the application of electromagnetic techniques 

such as MT may be less straightforward in exploration for 

unconventional geothermal resources. 

 

Time lapse MT monitoring of an enhanced geothermal system 

near Paralana, South Australia was performed in 2011 

(Peacock et al., 2012; Peacock et al., 2013). In this experiment, 

MT data were collected pre- and post-injection of an 

electrically conductive fluid into a natural fault network at 3.6 

km depth. Much stronger increases in electrical conductivity 

were observed parallel to the strike of the fault network than 

perpendicular to it, consistent with an increase in hydraulic (and 

electrical) conductivity. These observations show that the 

presence of fluid-filled fractures in a medium changes the 

effective electrical conductivity that is measured. 

 

Electrical current and fluid flow 

 

Fluid flow through porous media is, at low flow velocities, 

described by Darcy’s Law: 

 

 (1)  

 
Where Q is the volumetric flow rate, k is the permeability, µ is 

the viscosity, p is the pressure and A is the cross sectional area 

of the sample. Ohm’s law describes electric current flow: 

 

 (2)  

 
Where I is the current, A is the cross sectional area, ρ is the 

resistivity and v is the voltage. 

 

Fractures are commonly approximated by the parallel plate 

model, where either side of the fracture is a smooth plate with 

separation d and width ly, and therefore the cross-sectional area 

for fluid flow is lyd. The steady state solution of the Navier-

Stokes equations for laminar fluid flow leads to a cubic 

dependence of fluid flow on aperture (Brown, 1989): 

SUMMARY 
 

We present models of random resistor networks to relate 

electrical resistivity to fracture permeability in the upper 

crust. In this approach, the upper crust is modelled as a 

network of resistors that are randomly assigned to be 

either electrically and hydraulically conductive or resistive 

based on a network-wide probability of connection. In the 

models presented here, the conductive resistors are 

assigned resistance values based on a constant fracture 

diameter of 1 mm and a fluid resistivity of 0.1 Ωm, with 

variable fault length distributions and probabilities of 

connection. We have found that the permeability is very 

sensitive to both of these parameters, increasing to 8.33 × 

10
8
 times the matrix permeability in the fully connected 

case. The resistivity is less sensitive, increasing by a factor 

of 1000. 
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 (3)  

 
Comparison of this equation with Darcy’s Law shows that the 

permeability of the fracture is equal to d
2
/12. In contrast, the 

electrical current flow through such a fracture has a linear 

dependence on d: 

 

 (4) 

 
Where ρf is the resistivity of the fluid. As noted by Brown 

(1989) equations (3) and (4) have a similar form, with the 

permeability/viscosity being analogous to the electrical 

conductivity. Therefore, it may be possible to directly relate 

conductivity to permeability. 

 

METHOD 

 
Random resistor networks 

 

Bahr (1997) proposed the use of random resistor networks to 

evaluate the bulk electrical conductivity of a medium (Figure 1). 

In this type of analysis, electrical current flow is assumed to 

occur through a network of resistors. Resistors within this 

network are defined as either open (i.e., high electrical 

conductivity) or closed (low conductivity). Fluid flow through 

the same network can be considered in terms of a network of 

pipes (or in 2D, flat plates) with varying apertures, 

corresponding to varying hydraulic conductivity. The open 

resistors can be compared to faults within a host rock filled 

with an electrically conductive fluid, whilst the resistive parts 

can be compared to the background host rock and/or faults 

that are closed or cemented with electrically and hydraulically 

resistive cement. Importantly, the conductivity is controlled not 

only by the total number of open bonds, but also on their 

position in the network. 

 

This type of analysis can be performed in a probabilistic sense 

by considering a suite of different networks, each with the 

same probability p that any particular bond within the given 

network is open. By repeating this process at different 

probabilities of connection, and by modelling the current and 

fluid flow in different directions, the relationship between bulk 

electrical conductivity (and resulting electrical anisotropy) and 

the probability of connection in different directions, can be 

explored.  

 

 
Figure 1. Simple 2x2 random resistor network. Blue 

bonds are connected (i.e., low resistivity) bonds and white 

bonds are broken (or high resistivity) bonds. Modified 

after Bahr (1997). 

 

In order to replicate the behaviour of faults, a third variable can 

be introduced, defined here as the linearity factor. This factor 

biases the probability of connection of any given bond 

depending on whether the adjacent bond (in the direction of the 

bond) is open or closed. The linearity factor affects the relative 

probability of connection each bond in a network, so that the 

overall probability for a given network remains unchanged. For 

example, if a network has a linearity factor of two, the 

probability of connection of each bond that is adjacent to an 

open bond would have twice the probability of connection than 

one that was not adjacent to an open bond. This factor is 

included to make the networks more fault-like, with longer 

segments of high conductivity. High linearity factors are 

associated with longer average fault lengths, and low values are 

associated with short, segmented faults. 

 

For a given network, the fracture porosity or total void space 

occupied by fluid-filled fractures can be estimated using the 

following equation, assuming the fracture diameter is small 

compared to the cell size: 

 

 (5) 

 
Where ϕ is the porosity, px and pz are the probabilities of 

connection in the x and z directions, d is the fracture diameter 

and c is the cell size. 

 

Modelling approach 

 

We generated random resistor networks by first constructing a 

network of nodes. Bonds between nodes were then randomly 

assigned either a high or low value of both permeability and 

electrical conductivity, according to a network-wide linearity 

factor and probability of connection in each direction. 

Permeability and conductivity values assigned to the resistors 

were calculated based on fluid and matrix resistivities of 0.1 

and 1000 Ωm, and a fracture diameter of 1 mm. The matrix 

permeability was set at 10
-18

 m
2
. The probability of connection 

in the horizontal direction was set to be constant at 0.1. 

Electrical current and fluid flow was then modelled in two 

orthogonal directions across the network for linearity factors of 

1, 5 and 20 for probabilities of connection in the vertical 

direction ranging from 0 to 1. In each model, a voltage and 

pressure difference of 1.0 was applied across the network. 

Through equation (2), the bulk resistivity is then equal to the 

inverse of the average current flow per unit length entering (and 

exiting) the network. Likewise, the bulk permeability is equal to 

the viscosity multiplied by the average fluid flow rate through 

the network. 

 

RESULTS 
 

An example of one model realization, with a probability of 

connection in the z direction of 0.5, is shown in Figure 2. The 

effective conductivity and permeability has been calculated for 

various probabilities of connection and linearity factors, and is 

plotted in Figure 3. The fault length distribution for various 

linearity factors, for a probability of connection of 0.4 in the 

vertical direction, is also shown in Figure 3. 

 

The effective resistivity for the model shown in Figure 2 is 

85 Ωm in the vertical direction and 590 Ωm in the horizontal 
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direction; the effective permeability is 2.9 × 10
-17

 m
2
 in the 

vertical direction and 2.1 × 10
-18

 m
2
 in the horizontal direction. 

 

The fluid flow tends to focus much more strongly in the longer 

fractures that connect all or most of the way across the 

network than the electrical current, which is more evenly 

distributed amongst all fractures and in the matrix (Figure 2). 

As a result, the fluid flow appears to follow a longer path 

across the network than the current flow, particularly in the less 

connected horizontal direction (Figure 2f). Consistent with this, 

the anisotropy in permeability (factor of approximately 14 in 

Figure 2) is in general higher than the electrical resistivity 

anisotropy (factor of 7).  

 

 
Figure 3.  (a) Effective electrical conductivity, and (b) 

Permeability, vs. probability of connection for three 

linearity factors for a 50 × 50 cell random resistor 

network of an 5 × 5 m area of rock. (c) Histograms 

showing fault length distributions associated with each 

linearity factor, for a probability of connection of 0.5. 

 

With both fluid flow and current, the relationship between the 

probability of connection and effective permeability or 

resistivity is not linear. As shown by Bahr (1997), at low 

probabilities of connection, there are not enough conductive 

resistors to make a connected path through the network, and 

therefore, increasing the probability of connection does not 

result in strong increases in either resistivity or permeability. 

However, as the percolation threshold is approached, both 

properties increase rapidly. 

 

For fluid flow, the percolation threshold is well-defined (Figure 

3b). It occurs at a vertical probability of connection of 0.25 for 

a linearity factor of 20, at about 0.55 for a linearity factor of 5, 

and at about 0.5 for a linearity factor of 1. The permeability 

increases by over 5 orders of magnitude over the percolation 

threshold, a change in probability of connection of 0.1. 

Increasing the linearity factor has the effect of shifting the 

percolation threshold to lower probabilities of connection, so 

that the probability of connection required to reach the 

percolation threshold is not as high. However, the rate of 

increase in permeability over the percolation threshold is similar 

(Figure 3b). 

 

In contrast, the resistivity has a much less well defined 

percolation threshold, with effective conductivity only 

increasing by two orders of magnitude. As with fluid flow, the 

percolation threshold occurs at vertical probabilities of 

connection of 0.25, 0.55 and 0.85, occurring at lower 

probabilities of connection as the linearity factor is increased. 

 

Comparison with Figure 3 shows that the model shown in 

Figure 2 is just below the percolation threshold. 

 

CONCLUSIONS 
 

We have presented here preliminary results of modelling of 

electrical current and fluid flow through simple 2D random 

resistor networks. Each bond in the networks was set to be 

either a hydraulically and electrically conductive, or resistive, 

based on a network-wide probability of connection in the 

horizontal and vertical directions. The permeability and 

resistivity values were set based on a fixed matrix permeability 

of 10
-18

 m
2
 and resistivity of 1000 Ωm, a fluid resistivity of 0.1 

Ωm, and a fracture diameter of 1 mm. The probability of 

connection in the horizontal direction was also fixed at 0.1 for 

all models. Modelling was carried out for probabilities of 

connection in the vertical direction ranging from 0 to 1. 

 

The modelling shows that a percolation threshold can be 

defined for both fluid flow and current, below which the 

effective conductivity is close to the matrix value. At the 

percolation threshold, both permeability and electrical 

resistivity, but in particular the permeability, are highly sensitive 

to changes in probability of connection, increasing rapidly over 

the percolation threshold.  

 

Further modelling will be undertaken to more fully explore the 

relationship between the different input parameters and the bulk 

electrical and hydraulic properties. In particular, we will look in 

more detail at the effect of changing the mean fracture aperture 

and fracture porosity, and will also investigate other parameters 

such as linearity factor, a proxy for mean fracture length, and 

the probability of connection each direction.  

 

We will also expand the modelling to 3D, and incorporate more 

complex networks using fractal embedded networks (Bahr, 

1997). With fractal embedded networks, each bond within the 

network can be considered as either conductive, resistive, or 

alternatively, embedded. In the case that the bond is 

embedded, the individual bond is replaced by a network of 

bonds with its own probability p of connection. The network 

can be embedded in this way multiple times, and as a result, 

connectivity is evaluated on smaller and smaller scales. An 

embedded geometry may be more realistic for modelling 

fracture networks, which can exist on the scale of several 

kilometres down to micro-scale cracks. Using embedded 

networks, a range of scales can be included in a single model.  
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Modelling the effect of open fractures on resistivity and 

hydraulic conductivity will allow us to develop an improved 

understanding of the relationship between electrical resistivities 

obtained from electromagnetic and subsurface fracture 

characteristics. This will help to improve the geological 

interpretation of electrical resistivities interpreted from 

magnetotelluric data, contributing to its utility as an exploration 

method for resource exploration. 
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 A 

Figure 2.  Two dimensional electrical random resistor network representing a 5 × 5 m fractured rock mass with fault 

diameter 1 mm and fluid resistivity 0.1 Ωm. Probability of connection is 0.1 in the horizontal direction and 0.5 in the vertical 



 

 

 

direction, linearity factor is 5. (a) resistivity, (b) horizontal current, (c) vertical current, (d) permeability, (e) horizontal fluid 

flow, (f) vertical fluid flow. 


