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INTRODUCTION 

 
Calculating numerical solutions of the 3D acoustic wave 

equation represents the key computational kernel of most 

advanced 3D seismic imaging and inversion methods currently 
used in seismic exploration.  These algorithms include the 

high-end 3D seismic techniques of reverse-time migration 
(RTM), full-waveform inversion (FWI) and wave-equation 

migration velocity analysis (WEMVA). Finite-difference 
time-domain (FDTD) methods represent the most common 

numerical approach for generation solutions of the 3D 

acoustic wave equation, and have long been developed and 
increasingly widely implemented since the 1980s (Robertsson 

et al., 2012).  While 3D FDTD modelling of acoustic 
wavefields is fairly straightforward for regularly sampled 

rectilinear meshes, these approaches have seemingly lower 
applicability for scenarios where seismic data are acquired on 

surfaces exhibiting irregular topology.  Undertaking full-
wavefield imaging and velocity inversion experiments in these 

situations requires handling irregular computational domains 

that are arguably best described by a more general non-
Cartesian geometry.  These types of scenarios may be found at 

many scale lengths, ranging from laboratory imaging 
experiments using ultrasonic measurements on cylindrical 

core plugs to seismic exploration scale over free-surface 
topography or irregular water-bottom surfaces.  

 
One strategy for handling scenarios exhibiting irregular 

geometry is to turn to integral-based methods that solve the 

3D acoustic wave equation on voxelised elements designed to 
conform to undulating domain boundary surfaces and to infill 

computational mesh interiors.  Examples of these types of 
approaches include the finite-element (Marfurt, 1984), 

spectral-element (Komatitsch and Vilotte, 1998) and 
discontinuous-Galerkin (Cockburn et al. 2000) methods.  By 

using meshes conformal to irregular surfaces, these 
approaches facilitate the numerical implementation of free-

surface boundary conditions (Priolo et al., 1994) and are able 

to more accurately represent discontinuities across major 
interior lithological boundaries relative to finite-difference 

methods (Fornberg, 1988). 
 

While the integral-based methods provide highly accurate - 
though computationally expensive - solutions to the 3D 

acoustic wave equation, herein I argue that automatically 

precluding FDTD strategies for scenarios exhibiting irregular 
geometry and generalized (quadrilaterally faced hexahedral) 

structured meshes represents a severe and potentially 
unnecessary restriction. Rather, applying a FDTD 

methodology on irregular structured meshes is technically 
feasible and, in many cases, represents a cost-effective 

computational strategy.  A successful implementation, though, 
requires addressing three key challenges: (1) how to generate a 

3D computational domain that conforms to the desired 

geometry and exhibits favourable mesh characteristics; (2) 
how to specify the 3D acoustic wave equation appropriate for 

the irregular computational domain; and (3) how to provide a 
stable and numerically accurate solution of the 3D acoustic 

wave equation on that generalized 3D mesh.  
 

Solving partial differential equations on irregularly shaped 

computational domains using coordinate transformation 
approaches and finite-difference operators is a common 

technique for boundary value problems in many science and 
engineering fields.  While these techniques have found a 

moderate amount of traction for modelling wavefield solutions 
of 2D/3D (visco)elastic wave equations (Ohminato et al., 

1997; Hestholm, 1999; Appelo and Petersson, 2009), they are 
seldom used to solve the two-way acoustic wave equation for 

3D full-wavefield imaging and velocity inversion problems.  

 
The acoustic propagation methodology advocated herein 

represents an adaptation of the Riemannian wavefield 
extrapolation (RWE) coordinate transform approach that uses 
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differential geometry relationships and known mappings 

between 3D generalized and Cartesian coordinate systems to 
specify the Laplacian differential operator governing 3D 

acoustic wave propagation in that generalized coordinate 
system.  Sava and Fomel (2005) present a derivation of RWE 

for acoustic wave propagation in 2D semi-orthogonal 
``Riemannian coordinates'' and implement a one-way operator 

appropriate for 2D wave-equation migration (WEM).   
Shragge (2008) extends this approach to 3D non-orthogonal 

coordinates and similarly implements a one-way operator for 

3D WEM imaging. Shragge (2014) demonstrates the 
applicability of this method for two-way acoustic wave 

equations and applies the developed FDTD operators to 
perform 2D RTM directly from topographic surfaces.  

Building on from these approaches, the goals of the present 
work are three-fold: (1) to provide an extension of RWE 

theory to the two-wave acoustic wave equation for generalized 

(non-orthogonal) 3D geometries; (2) to demonstrate that one 
can develop generalized-coordinate O(∆t2,∆x8) FDTD 

operators that are (nearly) equivalent to standard Cartesian  
O(∆t2,∆x8) FDTD operators; and (3) to highlight some of the 

potential uses of the method for 3D acoustic wave propagation 
problems exhibiting non-Cartesian geometry. 

 
I begin by presenting the theory of the 3D (constant-density) 

acoustic wave equation in generalized 3D coordinate systems 

based on coordinate mapping and differential geometry 
relationships.  I then detail a numerical FDTD solution of the 

3D acoustic wave equation that takes into account the spatial 
variability of non-Cartesian geometry. Finally, I test the 

developed theory and the numerical scheme on two different 
computational meshes: an ``internal boundary'' mesh 

conforming to a dipping water bottom, and an ``topographic" 

coordinate mesh conforming to an irregular free surface.   

 

GENERALIZED ACOUSTIC WAVE EQUATION 

 
The acoustic wave equation in a 3D generalized coordinate 
system defined by variables ξ = [ξ1,ξ2,ξ3] is given by 
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whereÑx

2
 is a generalized Laplacian operator, vξ is a velocity 

field, Uξ is a scalar acoustic wavefield, and Fξ is the source 

distribution. Herein, I use a notation where subscripts ξ 

designate fields and operators defined in the generalized ξ-

coordinate system, while those in Cartesian coordinate system 
x=[x1,x2,x3] are specified by a subscript x. Cartesian x-

coordinates represent a physical domain over which one 
desires to calculate a solution to the acoustic wave equation. 

Generalized ξ-coordinates represent a transformed canonical 
domain on which one actually computes an acoustic wavefield 

solution. The relationship between the ξ- and x-coordinate 
systems is assumed to be known, unique (i.e., one-to-one), and 

expressible through a set of analytical or numerical mapping 

equations, xi=fi(ξj) where i,j = 1,2,3. 
 

Because the partial differential operators of the generalized 
Laplacian are specified in the ξ-coordinate system, they 

naturally are affected by spatially varying geometry.  
Providing the correct formulation of the Laplacian operator on 

the ξ-mesh involves introducing transformations from the 

mathematical field of differential geometry in the form of the 
(symmetric rank-two) metric tensor, [gij], whose elements 

provide a link between the ξ- and x-coordinate systems:  

 gij =
¶xk

¶xi

¶xk

¶x j

,                                                                    (2) 

where summation notation over repeated indices is assumed 

and subscript and superscript indices on matrices (i.e., gij and 
gij) indicate covariant and contravariant tensors, respectively 

(Synge and Schild, 1978). 
 

Specifying the acoustic wave equation in generalized 
coordinates requires using a contravariant representation of the 

metric tensor defined as the matrix inverse of the covariant 
metric tensor. Computing the partial derivatives of the 

Laplacian operator in equation 1 involves introducing the 

contravariant metric tensor elements into a generalized 
expression for the Laplacian operator (Guggenheimer, 1977).  

When substituted into equation 1, one recovers the following 
generalised 3D acoustic wave equation 
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where, for brevity, I write first-order coefficients ζi as 

z i =
1

| g |

¶ | g |gij( )
¶x j

                                                                 (4) 

and |g| is the metric tensor discriminant.  
 

GENERALIZED FDTD PROPAGATION 
 
Specifying a 3D FDTD propagation scheme appropriate for 

generating numerical solutions of the 3D acoustic wave 
equation in generalized structured meshes is a relatively 

straightforward undertaking that requires only two minor 
modifications to established Cartesian-coordinate FDTD 

approaches.  First, one must account for the spatially varying 

metric tensor components when applying FD stencils to 
discretized wavefields.   Second, one needs to incorporate both 

first- and mixed second-order partial derivatives, as well as the 
standard second-order partial derivatives, of the generalized 

Laplacian operator in equation 3. 
 

The proposed FDTD scheme is based on finite-difference 

approximations of order O(∆x8) for the spatial first- and 
second-order derivative operators and an O(∆x4) 

approximation of the mixed second-order partial derivatives 
(where ∆x is the sampling interval in the canonical domain).  

Continuous wavefields are approximated by a discrete 
representation, Uξ (ξ,t) = Up

l,m,n, where l=[1,L], m=[1,M] and 

n=[1,N] are spatial indices and p=[1,P] is the temporal index. 
Similarly, the continuous and time-independent ζi fields and gij

 

metric tensor components are represented by ζi
l,m,n and gij

l,m,n. 

Given these representations and assuming that discretization 
of the computational mesh is uniform in all directions (i.e., ∆ξ 

=∆ξ1=∆ξ2=∆ξ3), I rewrite the spatial first-order partial-
derivative FD operators as, e.g., 
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where similar approximations exist for the other first-order 

partial derivatives. I write the second-order partial-derivative 
FD operators as, e.g., 
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where, again, similar expressions exist for the second-order 
partial derivatives. I approximate the mixed second-order 

partial-derivative FD operators as, e.g.,  
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where similar expressions exist for the two other mixed 

second-order partial-derivatives. The FD coefficients Fi, Si and 
Mij used in the following examples can be found through 

standard approximation techniques.  Finally, I use a standard 

O(∆t2) approximation for the second-order temporal derivative 
term that, when combined with expressions like those in 

equations 5-7 and solving for Up+1
l,m,n, leads to  3D FDTD 

propagation scheme for modeling the temporal evolution of an 

acoustic wavefield on a generalized 3D coordinate mesh. 
 

NUMERICAL EXAMPLES 
 

This section investigates 3D acoustic wave propagation on 

two different coordinate meshes: ``internal boundary'' (IB) 

coordinates conforming to an irregular seafloor surface and  
``topographic'' coordinates conforming to an irregular free 

surface.  These computational meshes provide informative 
tests of both the generalized 3D acoustic wave-equation theory 

and of the implementation of the 3D FDTD numerical scheme 
described above. 

 

One potential use of generalized 3D coordinate systems is to 
create meshes that are conformal to irregular internal 

boundaries, such as those at major lithological interfaces (e.g. 
seafloor, geologic unconformities, etc; c.f. Figure 1).  By 

aligning the coordinate mesh with these boundaries one can 
reduce - or potentially eliminate – many of the deleterious 

discretization artifacts (e.g., stair-casing) commonly observed 
in Cartesian wavefield simulation through dipping interfaces. 

Moreover, this approach can also be used to improve 

algorithmic efficiency, such as allowing for wavefield 
injection of data from ocean bottom cable (OBC) or node 

(OBN) datasets along a single interface conformal to irregular 
sea-floor topography. 

 
Generating meshes conformal to one or more generic 

parametric surfaces can be accomplished by employing Bézier 

interpolating functions.  Herein, I present an example of a 3D 
coordinate system conforming to: (1) the free-surface 

boundary; (2) a uniformly flat layer at depth; and (3) an 
irregular water-bottom surface. Note that the resulting 

mapping relationship between the two coordinate systems (c.f. 
Figure 1) defines the geometric coefficients in equation 3 and 

thereby the specific generalised 3D acoustic wave equation to 
be solved.  Importantly, in the context of this work, because 

the 3D internal boundary (IB) coordinate system exactly 

conforms to a 3D Cartesian mesh at the surface and at a 
constant depth level, this computational mesh allows for a 

direct evaluation of the numerical accuracy of the above 3D 
FDTD scheme relative to the equivalent Cartesian FDTD 

scheme, and thus represents an important numerical 
verification of the described approach. 

 
Figure 2 presents the constant velocity 3D impulse response 

computed in 3D IB coordinates and then interpolated back to a 

Cartesian mesh. Note that the impulse response is 
hemispherical as demanded by theory.  To better test the 

accuracy of the numerical scheme I compute the impulse 
response through a Cartesian mesh using Cartesian FDTD 

operators of the same order.  Figure 3 presents a waveform 
comparison between the results computed in IB (green) and 

Cartesian (red) coordinates as well as the waveform difference 

(black). The waveform fit is very good, though the Cartesian 
waveform exhibits a very slight delay with respect to the IB 

waveforms (i.e., by less than a single time sample) and thus 

does not provide a perfect match.  Overall, this example 
demonstrates the IB meshes can be specified and used in 3D 

acoustic propagation kernels for RTM and FWI applications. 

 
Figure 1.  2D volume slice extracted from 3D IB coordinate 

system. Note that a single depth contour of mesh has been 
made to conform to the irregular sea bottom. 

 
Figure 2. 3D constant velocity impulse response simulated 

through the 3D IB coordinates mesh and then interpolated 

back to Cartesian coordinates. 
 

A second application of the proposed 3D FDTD acoustic 
propagation scheme is simulating wavefields directly from 

topographic surfaces.  This remains a numerical challenge 
commonly encountered during 3D prestack depth migration 

and FWI of land seismic data.  Similar to above, I use (linear) 
Bézier interpolating functions to construct a 3D computational 

mesh that is conformal to both a topographically influenced 

free surface and a constant depth level. Again, the mapping 
relationship between the ξ- and x-coordinate systems defines 

the geometric coefficients and thereby the specific generalised 
3D acoustic wave equation to be solved.   
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Figure 4 presents an example of acoustic wave propagation 

simulated in topographic coordinates and subsequently 
interpolated back to the Cartesian mesh.  (The topographic 

free surface is overlain for reference.)  This example shows 
the downward propagating hemispherical wavefront, as well 

as significant scattering from free-surface topography. Note 
that because the coordinate mesh conforms to the free surface, 

it is easy to apply the free-surface boundary condition and 
replicate full wavefield effects without introducing commonly 

observed Cartesian staircasing phenomena. 

 
Figure 3.  Numerical accuracy test comparing waveforms 
simulated in IB (green) and Cartesian (red) coordinates 

along with the waveform difference (black). 

 
Figure 4. Example of 3D acoustic wave propagation in 

“Topographic coordinates” (following an interpolation 
back to a Cartesian mesh for visualisation purposes). 

 

CONCLUSIONS 
 
Applying 3D FDTD acoustic wave propagation on generalized 

structured meshes is feasible using a combination of 

coordinate mappings and differential geometry. The two key 
changes relative to a Cartesian 3D FDTD implementation are 

introducing first- and mixed second-order derivatives as well 
as geometric scaling factors to account for the effects of 

spatially varying geometry when computing 3D acoustic 
wave-equation solutions. The examples demonstrate that 

stable and accurate solutions of the 3D acoustic wave equation 
can be found using a generalized coordinate FDTD strategy. 

Finally, the generalized 3D FDTD approach provides accurate 

3D impulse responses and thus can be used as the 
computational kernel for non-Cartesian 3D imaging and 

velocity inversion experiments such as RTM, FWI and 
WEMVA and, potentially, related 3D FDFD FWI approaches.   
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