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INTRODUCTION 
  
Many 2D seismic surveys that were shot decades in the past 

remain an invaluable tool for early hydrocarbon reservoir 
exploration. Those surveys were typically shot to gather basic 

geologic and structural information for understanding basin 
architecture prior to drilling initial wells. As unconventional 

reservoirs develop into resources of interest, these old surveys 

are being reinterpreted for additional information.  
 

One useful mechanism for integrating data, especially among 
sources with different inherent scales (such as core, log and 

seismic) is to associate data to consistent patterns of inputs 
that represent consistent properties within the reservoir.  For 

example, log data are influenced by rock material properties, 
which vary as a function of the rock texture and composition.  

Therefore, if one’s chosen inputs for a classification model are 

sensitive to variability in material texture and composition (as 
logs typically are), then the resulting ‘classes’ should isolate 

zones of consistent material properties.  Such an approach was 

used previously for modern 3D seismic volumes (Suarez-

Rivera et al. (2013), Handwerger et al. (2014)) in regions with 
extensive log and core data.  In this study, we employ similar 

techniques on older 2D seismic data with fewer logs and core. 
 

 

METHOD AND RESULTS 
 
Our goal was to interpret two intersecting legacy 2D surveys 

from an unconventional reservoir in a frontier Canadian basin 

(a situation not dissimilar to what is faced in Australia today) 
for rock material properties, following a process similar to 

Suarez-Rivera et al. (2013) and Handwerger et al. (2014) but 
modified to account for the differences in data type and 

quality.  The core and log data that provide material properties 
for integration with the seismic data came from new wells, but 

the seismic data were collected in 2001, and were inverted 
separately prior to the recent drilling using legacy logs. 

 

One well was drilled and logged recently on each of the lines 
(two total), and each of these was cored.  The cores were 

primarily analyzed for petrophysical properties needed to 
make preliminary assessment of the reservoir quality.  Data 

presented here include total porosity, hydrocarbon-filled 
porosity, water saturation, organic content and permeability. 

 

The inversions produced only acoustic impedance and shear 
impedance attributes due to insufficient signal in the data for 

density extraction.  Since the 2D lines were shot and inverted 
separately, the attribute values are not consistent between 

them; exemplified by a lack of agreement at their intersection.  
However, using multivariate classification, based initially on 

the log data, and integrated with the seismic we were able to 
associate consistent material properties to the seismic data in 

spite of this. 

 
We first created a unified rock class model using unsupervised 

classification of the log data from both wells (figure 1).  The 
input log data consisted of gamma ray, bulk density, neutron 

porosity, deep resistivity and P-wave travel time.  The logs 
from each well were extracted over the same zone of interest 

and these data appended into a composite well for 

classification.   
 

SUMMARY 
 

We developed a workflow that allows integrating legacy 
2D seismic surveys with modern log and core data, 

validating their consistency, classifying them into rock 
classes with consistent properties, propagating material 

properties across each of these rock classes, and using 

this information to improve reservoir characterization and 
the assessment of their hydrocarbon resource potential. 

As proof of concept, we analyzed two intersecting 2D 
seismic lines shot in 2001 in a frontier basin in Canada to 

determine the distribution of reservoir quality. Each of 
these had been separately prestack inverted, but have 

modern core and log data (as well as legacy log data) 
which were integrated with the inverted attributes. 

 

Results identify a most prospective class for reservoir 
quality within the zone of interest, and show that it 

increases in thickness to the south in the seismic section.  
 

Key words: classification, unconventional, seismic, 
characterization 
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One advantage of an unsupervised class model is that it 

partitions the input data into classes with maximum 
uniqueness and minimal distribution of input data per class, if 

the number of classes chosen is optimized.  This facilitates 
using the class model as input for supervised classification of 

subsequent logs, where one tries to recognize in those new 
logs the same previously defined classes in the model set.  

Once the classes are recognized in subsequent wells, their 
material properties, as determined through core analyses, are 

attributed to these same zones. 

 

 
Figure 1. Unsupervised classification model used for 

integrating core and log data with the seismic inversion.  
Two wells are shown.  In each, the data shown are: A. 

Gamma ray and calliper log, B. Deep resistivity log, C. 

Neutron porosity (blue) and bulk density (red) logs, D. 
DTC and DTS logs, E. the unsupervised classification at 

log scale, F. the compliance to the log-scale model, G. the 
seismic-scale model, and H. the compliance to the seismic-

scale model.  For each log, both native resolution and 
smoothed are shown.  The logs are shown at 1:3000 scale. 

We integrated the core data to the unsupervised class model 
by upscaling them to log resolution, then collecting the 

statistical distributions of each property for each class.  The 
upscaling consisted of building relational models between core 

and log data for each class, where the samples were 

strategically chosen to maximize representation of the 
constrained distribution of logs within each class.  These 

models were then used to predict each core property, class by 
class, from the multivariate logs at the sampling scale of log 

data (6” or 0.1524 cm).  By mapping the core data to the log 
data in this manner, the core data are de facto upscaled, as the 

logs become the template for core property propagation.  This 

also serves to distribute the core properties at a much greater 
sample density, thus improving the robustness of each class’ 

distribution statistics.   
 

The classification model from the logs, described above, was 
then upscaled to seismic resolution and used to provide 

training data for supervised classification of the inverted 
seismic attributes (AI and SI). The log data were first upscaled 

to seismic resolution using a smoothing filter, and then the 

classification was rerun using the smoothed logs (figure 1). 

 

We trained the attributes to recognize each upscaled class at 
the well trace and its adjacent trace in each direction along the 

2D line (to boost the training attribute population).  We 
performed extensive QC and data filtering as part of the 

training scenario to constrain the outcome to unique responses 
for each class, given that we change data types from logs, with 

which we define the classes, to the acoustic attributes (AI and 
SI) used to recognize the classes in 2D away from the 

wellbores. 

 
To propagate the classes through the full 2D sections, we 

applied the training rules to each 2D line’s inversion results 
(figure 2) separately, since the inversions are independent, and 

inconsistent.  Despite this, at the intersection trace of each line 
the classes are consistently aligned.  However, one needs to 

recognize that not all classes were available to train both lines. 

This is likely due to the fact that the wells were drilled in 
different depositional environments (one on the self, the other 

entirely in the off-shelf basin), and so show different rock 
properties.  For example, orange in one line was not available 

to train the other, as is also the case for grey and purple.  
However, the teal colour exists in the training data of both 

lines and meets conformably at the intersection of the two 
lines.  This will be discussed further, below. 

 
Figure 2. Propagation of the upscaled log-derived 
classification model through the two 2D lines used for this 

study.  The upper image shows the classification, the lower 

image shows the compliance to the model (see text, below).  
Only the thin wisps of light-bluish color exceed the 

threshold suggestive of a new class. 

When supervised classification of additional wells (or seismic 

data) is employed for recognizing the defined classes in 
additional areas, there are three possible outcomes.  First, the 

unsupervised model is perfectly descriptive of the classes that 
are found in the prediction well.  All the log responses in the 

prediction well are accounted for by classes defined in the 
model set.  Second, there are more classes in the model set 

than are found in the prediction well.  In this instance, the 

extra classes are simply ignored by the supervised 
classification and do not show up in the prediction well.  

Third, and most problematic, is when classes that should exist 
in the prediction well are not defined by the current model.  To 

account for this possibility, a separate metric is used to 

A B C D E F G H 
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evaluate the goodness-of-fit of each class assignment in the 

prediction well to the chosen class from the model set.  If the 
fit is good, the class assignment is compliant (low error).  If 

the fit is poor (high error), then there should be a new class 
assigned to those responses in the prediction well.   

 
Any supervised classification is only capable of recognizing 

classes it is trained to recognize.  Thus a ‘basinal only’ well, 
with its inherent basinal rock textural and compositional 

defined classifications,  wouldn’t necessarily provide training 

data to identify shelfal rock textures and compositional 
classes.  The output anywhere in a prediction well can only be 

the closest class match from the training model set, but this 
does not mean that the class assigned is statistically “close” to 

the reality; it’s just the closest fit among a bunch of bad fits.  
The metric we employ, a stratified Mahalanobis distance, 

measures a variance normalized Euclidean distance to the 

closest possible class (the one ultimately chosen) and if that 
distance exceeds a given threshold, it signifies a “none of the 

above” or “N+1” solution, regardless of the class presented.  
When this occurs, the new log responses can be iteratively 

added to the previous model, and then become recognized 
going forward.  The same metric is used to assess the 

compliance of supervised classification with the seismic data 
to the input model as well.  The result for this study is shown 

below the classification result in figure 2. 

  
In the context of the above discussion on the vagaries of 

supervised classification, as applies to this study, if there are 
classes in Well 1 that do not exist in Well 2, then Well 2’s 

seismic line cannot be trained to recognize that unique class in 
Well 1.  Consequently, such a class cannot show up in Well 

2’s 2D line.  However, where each well contains the same 

class, both 2D lines will also contain that same class, even if 
each line is independently classified to its own well.  If both 

wells contain the same class, both lines have means to 
recognize it.   

 
Therefore, one way to then “normalize” the lines, given that 

they have inconsistent attribute values from the original 
inversions, is to see if the similar classes between the two 

training wells converge at the intersection trace.  Other 

classes, unique to each training well, do not converge because 
they do not have representation in the opposite line’s training 

well.  This can be seen in figure 2.  At the intersection trace, 
the teal class exists in each line, because it exists in both 

training wells, but more interestingly it exists over roughly the 
same interval.  This suggests that despite the differences in the 

inversions, the training regimes for each line allow for a 
compatible result at the intersection of the two lines – each 

line is at least internally consistent, if not offset in their 

relative magnitudes.  Other classes, such as the grey class 
from Well 1/Line 1 and orange from Well 2/Line 2 propagate 

to, and meet at the intersection trace, but the alternate line for 
each has no training data to allow reconciliation of this 

discrepancy. 
 

Since the teal class generally meets conformably at the trace 

intersection, despite the differences in the actual inverted 
attribute values, the implication in terms of material properties 

is the same, as the material properties come from the 
integration of the core data to the class.  In this manner, the 

two lines are quasi-unified in terms of interpreting their 
attribute responses for material properties. 

 
With recognition of the classes away from the wellbores along 

the 2D lines comes identification of the expected material 

properties from the core calibration of the log model.  Log 

data are a more complete recorder of the changes in material 
properties of the formation.  They contain more measurements 

and more degrees of freedom than seismic data, which tend to 
be highly correlated, and only consist of Vp, Vs, density, 

and/or combinations of them (e.g. Poisson’s Ratio or Young’s 
Modulus calculations).  In the case of these two lines, the 

acoustic data are restricted to AI and SI. 
 

As a result, the log data are integrated with the core data via 

the rock classification, and serve as the model set for 
propagation through the seismic.  The five log tracks chosen 

are each uniquely sensitive to some variability in rock 
properties, regardless of possible correlations.  We are not 

concerned exactly how because we are classifying with all five 
logs simultaneously and attributing core-derived properties to 

each class. 

 
Figure 3 shows the relationship between the log-derived 

classes and the material properties measured from the core.  
On this star plot, a series of axes radiate from a central point.  

Each axis represents a single parameter.  The nodes of each 
coloured polygon lie at the mean value of each parameter 

plotted on its respective axis.  The polygon colour itself 
reflects the given class whose properties are being plotted.  

The uniqueness of each class, therefore, is reflected by the 

difference in each polygon’s shape.  The classification scheme 
shown is the upscaled version used for integration with the 

seismic. 

 
Figure 3. Relationship between seismic upscaled classes 

and certain petrophysical properties from core.  For 
legibility, the axes are given index labels.  The labels 

translate to: A=hydrocarbon-filled porosity (0-12 p.u.), 
B=permeability (10 nD-1000 nD), C=H2O saturation (0-

100%), D=TOC (0-8 wt.%), E=total porosity (0-12 p.u.).  
The lowest value in the plot range on each axis is the 

centre of the star plot.  The colour of each polygon 
represents the class colour shown in the seismic 

propagation (figure 2).   

 
What becomes apparent in this display is that there are 

properties where several classes share similar values (e.g. 
TOC for the purple and orange classes).  This is an 

unavoidable mathematical outcome.  It is not possible to 
develop a classification unique to multivariate patterns of one 

input (logs, in this case), and assure that it is simultaneously 
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unique in all possible associated properties (i.e. core data).  

One could isolate an individual property, and tailor a 
classification scheme strategically to maximize the uniqueness 

of that property per class (this is, in a sense, what forward 
modelling does), but in the context of bulk material properties, 

one cannot insure uniqueness in both the model and every 
possible material property.  It is the collection that is unique, 

not any one property. 
 

We see from the data, then, that the orange class contains the 

highest hydrocarbon-filled porosity (it is the outermost node 
on the HFP axis), at ~5 ± 1.8 p.u.  This class also has the 

highest TOC, at ~3.4 ± 1.4 wt.%, and intermediate total water 
saturation (which includes loosely bound clay water), at ~35 ± 

12 %.  The purple class has similar TOC content to the orange 
class, but lower hydrocarbon-filled porosity and total porosity 

and higher water saturation, making it potentially less 

prospective, and illustrating the point that some parameters 
can be similar between classes, but the groupings different.  

The next best reservoir quality class, from these data, could be 
the gray class, which from the 2D seismic lines is the one that 

meets the orange class at the intersection trace, given the 
discrepancies in the inversions discussed earlier.  The teal 

class has the lowest hydrocarbon-filled porosity, TOC and 
total porosity, but is similar in permeability to the other 

classes, possibly due to it also having the lowest water 

saturation. 
 

If the orange class becomes the target class for production 
(which may or may not be ideal, given that we have no rock 

mechanics data, for example), then one can see from the 
seismic data that it thickens towards the south, behind the 

other 2D line from the visual perspective of figure 2, perhaps 

making this a more attractive region for future drilling.  It 
could also extend at relatively uniform thickness parallel to the 

direction of the intersecting seismic line that shows the gray 
class.  From figure 3, these two classes are more similar in 

properties to each other than the rest of the classes, and they 
share what seems to be a similar horizon.  However, the line 

with the orange class has no training data for gray, and vice 
versa so we can only speculate that, at seismic resolution, and 

considering the discrepancies in the inversion, that they are 

roughly equivalent rock.  Additional well control could rectify 
this mathematical paradox by providing training data to each 

line with both classes present.  This would also clarify where 
these two classes may coexist, rather than forcing the 

interpretation to choose one or the other due to limited training 
data. 

 

CONCLUSIONS 
 

We have applied a workflow similar to Suarez-Rivera et al. 

(2013) and Handwerger et al. (2014) to a pair of intersecting 
legacy 2D seismic lines from a frontier basin in Canada.  The 

previous studies had been applied to modern 3D surveys with 
multiple modern logs available for the pre-stack inversions.  

This study differed in that we used legacy 2D lines inverted 
with a limited population of legacy logs.  The inversions of the 

two lines were conducted separately, and the results showed 
discrepancies between the lines. 

 

Each 2D line, however, did have one modern well with 
modern logs set and associated core.  These data were 

collected after the inversions were done.  A multivariate 
unsupervised classification model was built on a collection of 

modern logs collected in the field, both from the two wells on 
the two 2D lines in this study as well as elsewhere in the 

basin.   This model was then upscaled to seismic resolution 

and used to train a supervised class model so that the same 
classes could be propagated across the 2D seismic lines. 

 
Since each 2D line was trained to its respective log separately, 

but the logs themselves are unified in their class model, we 
were able to reconcile discrepancies in the inverted parameters 

by identifying the common classes on each line.  At the 
common trace tied at the intersection of the 2D lines, a 

common class isolated in the log data meet over a common 

range.  This suggests that despite the quantitative difference in 
attribute value at the intersection trace, the training to the 

classification was qualitatively accurate, and propagation of 
the class was consistent for the set of attributes used to carry 

this out. 
 

Results suggest that the pattern of logs that define the orange 

class, speculatively identified as having the highest reservoir 
quality (based on available ground-truth data) in the region 

thickens south of the well control. 
 

Each class from the log-based model was associated to a 
collection of core measured properties.  Since we have 

established that the class assignments are appropriate for each 
line, despite the quantitative differences between them, we 

were able to populate the lines with consistent properties 

through the core-log-seismic integration.  Recognition of the 
same classes calibrated with core properties away from the 

wellbore (albeit upscaled) along each 2D line allowed for the 
estimation of those same properties and improved 

characterization of the resource via the seismic data. 
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