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INTRODUCTION 
  

Multiple attenuation is an important step in seismic 

processing. Residual multiple left over by incomplete 
attenuation will degrade the final image.  In general, multiple 

attenuation involves two steps: the prediction/modelling of 
multiples and the separation of the multiples from the 

primaries. Considerable effort has been spent on the prediction 
of multiples in the last two decades. Surface-related Multiple 

Elimination (SRME) is used routinely in the industry to 

attenuate free-surface multiples; however, short-period and 
internal multiples are particularly problematic and have 

prompted significant research effort in recent years 
(Hargreaves, 2006; Wang, et al, 2012).  

 
Apart from the advances in multiple prediction, an effective 

strategy for separating the multiples from the primaries is 
equally important. One of the most widely accepted separation 

strategies is the L2-norm based least-square separation method 

(LS) (Verschuur and Berkhout, 1997). It allows for a degree of 
inaccuracy in the multiple prediction, namely, the mismatch of 

traveltime, amplitude and frequency spectrum between the 
predicted multiples and the recorded ones. However, a 

compromise has to be made between the preservation of the 
primaries and the attenuation of the multiples, especially in 

places where the primary and multiple events cross one 

another or overlap. For this reason, curvelet-based separation 
methods have been attracting increasing attention in recent 

years. They have the advantage of minimizing the damage to 
the primary events which are separable from multiples in the 

curvelet domain (Herrmann et al., 2008). This separation 
stems from the curvelet transform decomposing energy based 

on its coherent dip, position, and frequency. Nevertheless, 
among various implementations of curvelet domain separation 

approaches, the non-adaptive implementations may encounter 

numerical divergence if the predicted multiples are very 
different from the multiples in the data; whereas, the adaptive 

implementations either only correct for limited misalignment 
between the predicted and actual multiples, or suffer from 

high computational cost due to the use of curvelet matching 
filters (Saab et al., 2007; Neelamani, et al., 2010). Very 

recently, a 2D high-fidelity adaptive curvelet domain 

separation method was proposed to remove the multiples 
while still preserving the masked primaries (Wu and Hung, 

2013). Although the 3D curvelet transform has been used in 
denoising (Wang et al., 2013), it has not yet been, to the best 

of our knowledge, implemented for primary-multiple 
separation.  

 
In this paper, we introduce a new approach to primary-

multiple separation by utilizing the volumetric ultra-

sparseness of seismic data in the 3D curvelet domain, and a 
separation mechanism that is applicable to sparsely 

represented data. In addition to relying on certain separation 
characteristics, i.e., dip, frequency and spatio-temporal 

position, within a 2D seismic gather, the method we propose 
places a strong importance on the coherence between 

neighbouring gathers so as to differentiate the multiples from 
the primaries. This further enhances the separability of 

primaries and multiples from the three dimensional 

perspective. In the following sections, we first demonstrate the 
ultra-sparseness of seismic data in the 3D curvelet domain. 

We then extend the adaptive separation mechanism to 3D and 
test its performance on synthetic datasets. Finally, we compare 

the results with those obtained using existing separation 
methods. 

 

ULTRA-SPARSENESS OF 3D CURVELETS 
 
The 3D curvelet transform is a multi-scale and multi-

dimensional transform (Candès et al., 2006), and is written as: 

 (   ⃑    )   ∫  (     )
 

  

    ⃑    (     )       

where  (   ⃑    ) is the curvelet coefficient indexed by its scale 

component  , solid-angle dip    ((     ) in in-plane and out-of-
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separation of primaries and multiples by utilizing the 
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By extending our earlier work on the 2D method, our 

current 3D primary-multiple separation method takes into 
account the coherence between neighbouring gathers, and 

extends the Bayesian Probability Maximization (BPM) 
based separation mechanism into the 3D curvelet domain. 

The primaries and multiples are differentiated by utilizing 
the traces of neighbouring gathers in an additional 

dimension; this further promotes their separation 

compared to the 2D curvelet domain method. Moreover, 
this 3D curvelet domain separation method produces 

robust results regardless of the ordering of data as long as 
they are organized in a volumetric manner. Additionally, 

we have also introduced a 3D spatiotemporal constraint 
for handling the deviation from linearity or planarity of 

the seismic events. We demonstrate the improvement of 
the 3D curvelet domain primary-multiple separation 

method on synthetic and field data examples, by 

comparing the results with those produced by existing 
separation methods. 
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plane directions) and displacement  ⃑ ;  (     ) is the 3D 

seismic gather at time   and spatial locations   and  ; 

    ⃑    (     ) is the 3D curvelet basis. Both  ⃑  and    increase in 

dyadic order in each dimension for every other  , hence the 

term “multi-scale”. In contrast to the time-space or frequency 

basis localized in either domain, a 3D curvelet is localized in 
both frequency and time-space domains, as defined by choice 

of the indices (Figure 1(b)). In addition to the linearity that 2D 

curvelets offer (Figure 1(a)), 3D curvelets also possess 
planarity due to the dimension expansion.  

 

Reflection events in seismic data follow the variation of the 
strata in the channel/shot domain and hyperbolic trajectories in 

the shot/channel domain; hence, for most conventionally 

ordered seismic data coherence exists in two spatial directions. 
It is due to either the nature of propagating waves or to the 

subsurface geology. These characteristics suit well the linear 
or planar nature of the 3D curvelets, which leads to the ultra-

sparseness of seismic data in the 3D curvelet domain. We 
computed the 2D and 3D curvelet coefficients of the seismic 

section shown in Figure 2(a). Their distributions are shown in 

Figure 2(b). We can see a faster decay of the distribution of 
the 3D curvelet coefficients, which indicates greater level of 

sparsity for the 3D transform over the 2D transform. Both are 
expected to be sparser than time-space, Fourier or wavelet 

domain transforms (Candès et al., 2006). 
 

3D CURVELET DOMAIN PRIMARY-MULTIPLE 
SEPARATION 

 

Apart from the least-square (LS) methods that minimize the 
total variation of the difference between seismic data and 

multiple models, there exists a way to exploit the sparseness 
introduced by the curvelet transform and to separate multiples 

from primaries. This is the separation mechanism based on 
Bayesian Probability Maximization (BPM) (Saab et al., 2007) 

which was used in our previous work for 2D adaptive curvelet 

domain primary-multiple separation (Wu and Hung, 2013). If 
the prior probability distribution of coefficients of data and 

model is preset to a Gaussian form in BPM, the problem is 
reduced to a LS problem.  

 
As discussed in above references, the enhancement of 

sparseness by the 3D curvelet transform guarantees the 
validation of the L1-norm in the BPM optimization problem. 

Herein, we extend the primary-multiple separation formalism 

by incorporating the 3D curvelet transform. 
 

 (       )  ||   ||    
 ||   ||    

 

                                            ||  
            ||

 

 
 

                                           ||  
  (       )   ||

 

 
 

where     and     denote the primaries and multiples in the 

3D curvelet domain;   and    are the data and the predicted 

multiple model in the time-space domain, respectively.    

denotes the forward 3D curvelet transform and   
  

  its 

inverse.    and    are proportional to the 3D curvelet 

coefficients of the initial guess of model and data, and 

subscripts “    ” and “2” denote the element-wise weighted 

L1-norm, and L2-norm, respectively.   is the overall noise 

control parameter.     is the global adaptation filter to 

precondition the raw multiple model by correcting  its overall 
amplitude and traveltime if these properties are deviated from 

that of the actual multiples. This method is referred to as 3D 
Adaptive Curvelet Domain Separation (ACDS-3D). An 

iterative soft-thresholding algorithm was used to solve this 

problem (Daubechies, et al., 2004).  
 

Moreover, a spatio-temporal constraint has been implemented 
into ACDS-3D. Such extension is mainly due to two reasons: 

1): the seismic events might be strongly deviated from the 
linearity or planarity at a large scale and the sparseness of the 

coefficients may not be guaranteed. 2): the computational cost 
of the 3D curvelet transform is dramatically increased with the 

expansion of the operating size. For common seismic survey 

sizes, the method is only viable for research and testing 
purposes. Hence, a proper scale needs to be chosen in order to 

guarantee the sparseness of the seismic data in the 3D curvelet 
domain, and to cope with the spatiotemporal variation of the 

seismic data, e.g. amplitude and spectrum. 
 

 

SYNTHETIC AND FIELD DATA EXAMPLES 
 

We first assessed the performance of ACDS-3D on a simple 
example (Figure 3). For comparison, we show the results of 

the 2D adaptive curvelet domain separation (ACDS) method 
and the 3D least square (LS-3D) method. This example shows 

a typical case in which a horizontal multiple is fully 
overlapping with the primary reflection in the middle channel 

of Figure 3 (a1). ACDS works reasonably well in removing 

the multiple cutting through the primary. However, it fails to 
correctly separate the multiple in this example. This can be 

seen from the contamination of primary energy in the 
difference (Figure 3 (b2)) between the input (a1) and the result 

by ACDS (a2), in comparison with the true multiple (b1). LS-
3D is a variant of the conventional planar least-square method, 

operating on a 3D volume. From column (3) (LS-3D), we 
found that there is a trade-off between preserving the primary 

and eliminating the multiple. In order to minimize the 

(b) (a) 

Figure 1. Illustration of (a): a 2D curvelet and (b): a 3D 

curvelet in 3D space.  
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Figure 2. (a): The seismic section used to calculate the 

curvelet coefficients; (b): the distribution of 2D and 3D 

curvelet coefficients vs their values. The horizontal axis 
denotes the value of the curvelet coefficients relative to its 

maximum, in the unit of percentage; the vertical axis 
denotes the portion of the coefficients that is located 

around the value with a given interval tolerance.  
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distortion of the primary, we displayed a conservative result 

produced by LS-3D; apparently, residual multiple energy is 
left behind in the result. In contrast, ACDS-3D makes minimal 

compromise between primary preservation and multiple 

removal. As shown in (a4) and (b4), the multiple is completely 
separated from the primary in both the shot and the channel 

domains. The advantage of the method is particularly 
noticeable in the middle channel where the multiple is 

removed despite the fact that it is thoroughly masked by the 
primary. This simple example has demonstrated the capability 

of ACDS-3D for primary-multiple separation. By making use 
of their characteristics (e.g., scales and dips) with an 

additional dimension in ACDS-3D, the separability of 

primaries and multiples is significantly enhanced and the 
continuity of the events in those dimensions is better preserved 

compared with the 2D method. Also, the incorporation of an 
ultra-sparseness and BPM-based algorithm in ACDS-3D 

outperforms the LS-3D method which is based on the 
minimization of the total variation.  

 

We then tested the capability of ACDS-3D on surface multiple 

attenuation of a field data example. We still compare the 

results with the LS-3D and ACDS methods, as shown in 
Figure 4. In this example, SRME was applied to predict the 

surface-related multiples. The first order water-bottom related 

multiple and a strong primary event cut across one another 
with close dips in common channel gathers. They are severely 

overlapped in the middle channel gather, as shown in the right 
panel of Figure 4 (a1). In column (a), we found both 3D 

primary-multiple separation methods (LS-3D & ACDS-3D) 
are able to remove the multiple events in the aforementioned 

area of the middle channel gathers whereas the result by 

ACDS shows apparent remnants. Underneath the water 

bottom, primaries travel at higher speed (sound velocity in 

subsurface         ) than multiples do (sound velocity in 

water         ). Such difference leads to difference of 

their moveout with respect to offsets. Hence, the level of 
overlap between the primary and the multiple changes or 

vanishes in the recording of different receivers, as can be seen 

in near and middle common channel gathers. Fortunately, this 
difference can be identified by 3D methods. Although LS-3D 

and ACDS-3D show comparable results in terms of multiple 
removal, severe contamination of primary energy is observed 

in the near channel gathers by LS-3D, as highlighted by the 
arrows in the left panel of Figure 4(a). In contrast, ACDS-3D 

preserves the primary well and removes the first order water-
bottom related multiple at the meantime. This is because 

different degree of overlap between primaries and multiples 

from near to middle channels may require different 
parameterization of the matching filter, and this situation is 

difficult to be handled by a cuboidal filter performed on a 
volumetric window; ACDS-3D is free of filter parameters, and 

takes the volumetric coherence into account. Column (b) and 
(c) show the comparison of the separation methods in common 

mid-point (CMP) domain which is orthogonal to the domain 

we choose for separation. The selected CMP gather has a 
primary event overlaid by a strong multiple event in near 

(a1) (a2) (a3) (a4) 

(b1) (b2) (b3) (b4) 

(c1) (c2) (c3) (c4) 

(d1) (d2) (d3) (d4) 

Figure 3. Synthetic Example 1: Rows (a) and (b) show the 

channel gathers (3 channels in 1 panel) of the primary-

multiple separation results and differences between the 
input and results by (2) ACDS, (3) LS-3D and (4) ACDS-

3D, respectively. (a1) is the input and (b1) is the multiple 
model. Rows (c) and (d) are the corresponding shot 

gathers of rows (a) and (b). 

Figure 4. Field Data Example: Column (a): near (left 
panel) and middle (right panel) common channel gathers 

of (1) input, and the surface multiple attenuation results by 

(2) ACDS, (3) LS-3D and (4) ACDS-3D; Column (b): the 
corresponding CMP gathers; Column (c): (1) the CMP 

gather of the surface multiple model; the difference 
between input and the resulting CMP gathers by (2) 

ACDS, (3) LS-3D and (4) ACDS-3D. 
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offsets. Similar phenomenon can be seen in that the primary in 

the near offsets is severely contaminated by LS-3D (Figure 4 
(b3) & (c3)) but is well preserved by ACDS ((b2) & (c2)) and 

ACDS-3D ((b4) & (c4)). The reason for this is that the CMP 
domain is orthogonal to the domain of the separation process 

(common offset). The level of the overlap is then greatly 
reduced in that domain, which will not hinder the 

effectiveness of ACDS. Nevertheless, ACDS-3D still provides 
the superior result. Moreover, the vertical stripes in the 

shallow section of Figure 4 (c2) disappear in (c4) as ACDS-

3D considers an extra dimension of coherence than ACDS.  

 

CONCLUSIONS 
 

To summarize, we have developed an adaptive primary-
multiple separation method. It takes advantage of the ultra-

sparseness inherited from the 3D curvelet transform and a 
Bayesian Probability Maximization mechanism. Synthetic and 

field data examples have demonstrated that our approach 
outperforms the conventional 3D least-squares method and the 

2D adaptive curvelet domain separation method in terms of 

multiple removal and primary preservation. By taking into 
account the coherence of seismic data with an extra 

dimension, the separability between primaries and multiples is 
reinforced by the volumetric ultra-sparseness. 

 
Primary-multiple separation in 2D often involves a choice of 

data processing domain in order to get better results. 
Nevertheless, our proposed 3D separation method produces 

robust result regardless of the choice of the favourite domain 

for separation. This comes from the intrinsic conformity 
between the 3D nature of this method and that of acquisition 

surveys (e.g. shot/channel configuration). Moreover, in order 
to validate the volumetric ultra-sparseness, we have 

introduced the spatiotemporal constraint by implementing 
local windowing. 
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