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INTRODUCTION 
 
A basic tenet of geophysics is that any given geophysical sensor responds in a unique and predictable way to a given body of rock. 
For example, a gravity meter will always give the same measurement of gravitational acceleration at the same location (within 
measurement uncertainty, when all appropriate corrections are applied, and given no significant changes in subsurface density 
between measurements). Likewise, two-way-travel time will always be the same between given source and receiver locations for a 
seismic wavelet reflecting off a sub-surface horizon; electromagnetic soundings repeated in the same location will produce the same 
frequency or time spectra; and so on. This premise is based on established laws of physics and assumptions that the bulk physical 
properties of undisturbed rock formations (density, magnetic susceptibility, sonic velocity, thermal conductivity, electrical resistivity 
and so on) do not change rapidly on human timescales. Armed with physical laws and rock properties we can predict, or ‘forward 
model’, the unique geophysical ‘signature’ of any given combination and distribution of geological formations. 
 
The reverse, however, is not true. Given a set of geophysical observations, we cannot unambiguously reconstruct the geological 
conditions that gave rise to the observations. In mathematical terms, the problem is ‘under-determined’. That is, the number of 
geological variables that influence the geophysical observation is greater than the number of constraints provided by the 
observations. Gravity provides a simple example. The variation in gravitational acceleration across the Earth’s surface is a function 
of the distribution of density within the Earth. But any finite set of gravity observations could be produced by an infinite variety of 
different density distributions. Some can be ruled out on practical grounds (for example, the density of a rock unit must be > 0 
g/cm3), but there will always be an infinite set of density, depth and shape combinations that could produce the observations. 
 
This is a fundamental problem for geophysicists because the ultimate goal of any geophysical observation is to understand the 
subsurface. What good is geophysics if it cannot provide a unique solution? Geophysicists address this problem by implicitly or 
explicitly incorporating prior knowledge and/or other data sets into any interpretation. Prior knowledge might include the expected 
general spatial relationships between rock units (for example, intrusive units cross-cutting older formations) or reasonable limits on 
possible rock properties. Other data might come from other geophysical tools, geological observations, or both. Information such as 
the depth to formation boundaries intersected by boreholes; the physical properties of representative rocks measured in situ or in a 

 

SUMMARY 
 
Geophysical joint inversions seek to exploit the statistical fact that a model that simultaneously satisfies two or more independent 
data sets is more likely to represent geological ‘reality’ than a model that only satisfies a single data set. Interpreting geophysical data 
directly rapidly exceeds the capacity of a human as more data are added, so some form of machine assistance is usually required. 
Conventional inversion techniques can produce a ‘best fit’ model but this might only be one of a large range of possible models that 
fit the data. Bayesian inference provides a tool to evaluate the relative probability of all possible geological models in a given set, 
thereby quantifying the amount of information the data is actually providing. 
 
Over 2012–2014, National ICT Australia (NICTA; now Data 61) worked with a number of university, government and industry 
partners, with support from the Australian Renewable Energy Agency, to build a Bayesian inference software tool for geophysical 
joint inversions. The tool was initially directed at geothermal energy exploration but is equally applicable to investigating other 
geological problems. For one geothermal exploration problem, Bayesian inference allowed us to jointly invert gravity, magnetics, 
magnetotelluric soundings and borehole temperature records to map in three dimensions the probability of encountering granite 
>270°C beneath the Moomba region of South Australia. The results correlated well with an independent deterministic inversion 
carried out by Geoscience Australia, but provided a much richer interpretation in probability space. 
 
NICTA released the software tools as open source code on the GitHib platform. 
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laboratory; the general shape of formation boundaries imaged by seismic reflection; fault orientations and throws observed at the 
surface; and so on, all help to constrain the range of possible models. 
 
A single model that simultaneously matches all known data provides a more probable representation of the true geology than a model 
that only satisfies a single data set. Put another way, the greater the number of independent data sets that a single model can satisfy, 
the greater the confidence we can have that the model accurately represents reality. This is the motivation for ‘joint inversion’ 
techniques; for example, simultaneously interpreting both gravity and magnetic data using a single model. We can have greater 
confidence in the joint solution than we can for a solution that only satisfies the gravity or magnetic data on their own. 
 
Joint inversions also provide greater value than the ‘sum of their parts’ when the different data sets are sensitive to different aspects 
of the geology. For example, potential field techniques are most sensitive to lateral changes in geology, while seismic reflection and 
refraction techniques are more sensitive to vertical changes. 
 
While most geophysicists recognise the power of joint inversion, however, putting it into practice can be exceedingly challenging for 
more than a very small number of data sets. Exploring the range of all possible models to find a simultaneous optimal fit to numerous 
data sets very quickly exceeds the limits of human capability. 
 
Apart from the computational challenge of joint inversion, any inversion algorithm that produces a single solution introduces a risk 
that might not be immediately obvious. A single solution might converge on the most probable, representation of the true geology, 
but it is never the only possible solution. There may be other, very different, possible solutions with only marginally lower 
likelihood. Alternatively, the most probable solution could just be the median on a broad continuum of almost equally likely 
solutions. A far richer interpretation of the geophysical data is obtained from estimating the relative likelihoods of all possible points 
in the given model space. This is where a ‘Bayesian inference’ approach can be applied to geophysical inversion. 
 
While computationally challenging, Bayesian inference is increasing being applied to geoscience problems. In the past few years, 
Bayesian inference has been has been used, for example, to make sense of mixing models of isotopic tracers in glaciers (Arendt et al., 
2015); to reconstruct the relative plate motions of Nubia/Somalia before 3.2 Ma (Iaffaldano et al., 2014); to investigate the crustal 
structure of southeast Australia from seismic noise topography (Young et al., 2013); to understand slip rates on the San Andreas 
Fault (Murray et al., 2014); to reconstruct sediment thermal histories in a probabilistic sense (Gallagher, 2012); to map the thickness 
of the Australian crust with uncertainties (Bodin et al., 2012); and to investigate the compositional and thermal structure of the 
lithosphere from geochemical evidence (Afonso et al., 2013). To the best of our knowledge, however, Bayesian inference has not yet 
been applied to joint geophysical inversion. 
 
In March 2012, the Australian Centre for Renewable Energy awarded a grant to National ICT Australia (NICTA) to develop a 
methodology and software tools to apply Bayesian techniques to explore for geothermal energy. NICTA partnered with the 
University of Sydney, Australian National University, University of Adelaide, University of Melbourne, Geodynamics Ltd, 
Petratherm Ltd, Hot Rock Ltd, the Geological Survey of Victoria and the South Australian Department for Manufacturing, 
Innovation, Trade, Resources and Energy on what was ultimately a $6.6 million, 27-month project. The outcome was a library of 
open source code for implementing a Bayesian inference approach to joint geophysical inversion. While developed for the specific 
purpose of geothermal exploration, the code is immediately relevant for many other geological targets. This paper presents the 
methodology developed for the project, using the geothermal case as an example and referring to the software as appropriate. 
 

BAYESIAN INFERENCE 
 
Bayes’ Theorem is a fundamental element of probability theory. It can be expressed as: 
 

   
 
It is instructive to break Bayes’ Theorem into its individual terms to explain their meanings in a geophysics context. The paragraphs 
below introduce the different terms, while the following sections provide an example of the application of Bayesian geophysical 
inversion from NICTA’s geothermal energy project. 
 
P(θ|d) can be read as “the probability that a particular geological model (θ) is ‘true’, given the observed set of data (d).” In other 
words, how likely is it that the model we are investigating represents the ‘true’ geology given what we know in terms of geophysical 
(and other) data? This is a key question, for example, when we are faced with the financial risk of a drilling program. If we choose a 
drilling location and depth based on geophysical modelling, how likely is it that the drill will encounter the conditions, or discover 
the anomalous body, that our model predicts? Conventional inversion techniques usually search within a narrow range of possible 
models to find one that ‘best’ fits the data, but they don’t answer this question. Just because a model perfectly fits the available data 
does not necessarily mean it has P(θ|d) = 1; there might be other models that also perfectly fit the data. Bayes’ Theorem provides a 
rigorous means to quantify P(θ|d), but only if we can quantify the terms on the right hand side of Equation 1. 
 
P(θ) can be read as “the a priori likelihood of a particular geological model (θ) occurring in nature.” This is the domain of the 
geologist. This value derives from reasonable geological constraints on what is, and is not, a possible geological model. The ‘prior’ is 

       (1)
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constrained by such things as realistic ranges of rock property values; the law of geological superposition; expected maximum and 
minimum depths to principal geological boundaries; expected degree of curvature of formation boundaries; the likely ranges of dips, 
strikes, plunges and throws of layers, faults and folds; and so on (Figure 1). 
 

 
Figure 1: Two examples of geological models drawn from the same ‘prior’. The models are defined by five individual 
formations with rock properties drawn randomly from pre-defined probability distributions. The depths and shapes of 
formation boundaries are likewise defined by random selections from pre-constrained possibilities. 
 
 
The a priori likelihood of any specific geological model is the statistical likelihood of the combination of parameters that define the 
model. Each individual parameter defining a geological prior could be expressed as a probability distribution. For example, a 
geologist might be very confident that the average density of Formation X lies between 2.20 g/cm3 and 2.50 g/cm3, with a most likely 
value of 2.35 g/cm3. In this case, the density of Formation X could be defined as a normal (or Gaussian) probability distribution with 
a mean of 2.35 g/cm3 and a standard deviation of 0.05 g/cm3 (three standard deviations covers 99.7% of all occurrences.) Not all 
parameters are independent. For example, the density and sonic velocity of rocks tend to be correlated in that a denser rock is likely 
to have higher velocity. Such a correlation can be incorporated into a prior so that random draws with high density and velocity are 
much more likely than draws with high density and low velocity. 
 
P(d|θ) can be read as “the probability that a particular geological model (θ) could produce the observed set of data (d).” This is the 
domain of the geophysicist, and relies on forward modelling. For a specific geological model drawn from the prior, how well does 
the predicted geophysical response match the observed geophysical data (Figure 2)? In practice, this means constructing a numerical 
model of the geology defined by the parameters in the prior, using forward models to predict the geophysical response to the 
modelled geology, then comparing the prediction against the observed geophysical data. The ‘goodness of fit’ across all geophysical 
data sets must be distilled into a single ‘likelihood’ value between 0 and 1. There are challenges around how to treat measurement 
uncertainty and different quality data sets (e.g old data versus modern data), but there are also robust statistical rules and strategies 
for addressing these challenges. A single model and its likelihood define a single point within the ‘posterior’ of the Bayesian process. 
The full posterior covers all possible models and their likelihoods. 
 
The denominator on the right hand side of Equation 1 is the integral of the numerator over all possible combinations of parameter 
values. This is the domain of the mathematician, computer scientist and statistician. In effect, a solution to Equation 1 requires that 
every possible geological scenario be tested against the observed geophysical data. While the range of possible models is constrained 
by the prior, there are still infinite combinations of randomly distributed parameters to consider within that range. 
 
One approach is to attempt to sample from the distribution in Equation 1, rather than directly compute the integral. The resulting 
samples can be used to answer particular probabilistic queries about the inversion. The Markov-Chain Monte Carlo (MCMC) 
technique provides a tractable algorithm to perform this sampling, even on high-dimensional model spaces. However, when the 
forward models are computationally expensive, MCMC still requires the efficient allocation of computing resources. 
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Figure 2: An example of a set of gravity, magnetic, borehole temperature and magneto-telluric responses (top row) forward 
modelled from a specific geological model, compared to the set of observed geophysical data over the same area (bottom row). 
P(d|θ) captures how closely these two sets match each other. 
 

P(θ) — THE PRIOR 
 
The power of Bayesian inference for geophysical inversion can be illustrated with a case study. One of the geological problems we 
investigated during our project was to infer the location of high temperature granitic rocks from geophysical and geological data sets. 
The specific aim was to infer the probability of high temperature granitic bodies in the basement in the vicinity of the Moomba gas 
field in NE South Australia. The first step in the Bayesian process was to ‘parameterise’ the geology. That is, for an area roughly 35 
km x 35 km by 12 km deep we described the Cooper–Eromanga Basin and underlying basement as a finite set of parameters, each 
with mean and standard deviation values, encapsulating the range of possible geometries and physical properties of the rocks. 
 
We divided the stratigraphy into six layers, based on natural groupings of physical properties such as thermal conductivity 
(Beardsmore, 2004; Figure 3), density and sonic velocity. The first layer extended from the surface to the top of Murta Formation. 
The Murta Formation underlies the Cadna-owie Formation, the top of which corresponds to a seismic reflection horizon interpreted 
and published by the Department of State Development (DSD) in South Australia (‘C-Horizon’; Figure 4). A scattering of well logs 
from the region indicated that the Cadna-owie formation has a relatively uniform thickness of about 70 m in the study area. We 

defined the top of the second layer, therefore, as 70 m below the 
depth-converted C-Horizon and added a degree of uncertainty to the 
depth as described below. 
 
The top of the third layer corresponded to the top of the Namur 
Sandstone. The average interval between the tops of the Murta 
Formation and Namur Sandstone was 56 metres in boreholes 
around the region, with a standard deviation of less than 6 metres. 
So we defined the top of Layer 3 as 56 m below the top of Layer 2. 
The top of the fourth layer corresponded to the top of the Toolachee 
Formation, which we defined as 71 m above the depth-converted 
seismic ‘P-Horizon’ published by DSD, plus a degree of 
uncertainty. We divided the basement into two lithological groups. 
Layer 5 represented ‘granitic’ basement and Layer 6 ‘non-granitic’ 
basement. DSD’s depth-converted ‘Z-Horizon’ represents the top of 
the basement, but does not discriminate between Layer 5 and Layer 
6. Furthermore, even where it has been intercepted by drilling, the 
vertical extent of Layer 5 (ie granitic rocks) is not known. We 
assumed that, where it exists, Layer 5 is of finite thickness and sits 
atop Layer 6 (ie non-granitic) rocks. Figure 5 summarises our six 
layers. 
 
The mean depths and shapes of the interfaces between most layers 
were thus directly related to the depth-converted seismic horizons. 
To these surfaces we added uncertainty ranges with control points 
that could randomly deform each horizon in the vertical direction.  
The resulting surface was the sum of the horizon and a kernel-
smoothed height-map of gridded points with parameterized heights.  
 
Each layer was assigned a suite of rock properties relevant to the 
geophysical data sets we were inverting. The ranges of property 

Figure 3: Thermal conductivity profile through the 
Cooper–Eromanga sequence. From Beardsmore (2004). 
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values were constrained by laboratory measurements on 115 core samples drawn from throughout the stratigraphic section. 
Properties of interest included density, magnetic susceptibility, thermal conductivity, radiogenic heat generation and electrical 
resistivity. Table 1 summarises the ranges of values we allowed our Bayesian model to explore. The properties of each layer were 
assumed to be constant across the entire layer. The prior distribution over rock properties was determined statistically from a 
combination of sample data and published averages. 
 
Through the process described above, we could fully define (or parameterise) a geological framework for the Moomba study area, 
including the geometry of layer interfaces and physical rock properties, with a sequence of 101 numbers. Randomly drawing a value 
for each of the parameters from within their probability distribution effectively defined a single geological model conforming to our 
prior belief of what is possible. Each such random model had a unique combination of layer shapes, depths and physical properties. 
 

    
Figure 4: Depth to C-Horizon. Data supplied by the  Figure 5: Summary of our stratigraphic layers. 
Department of State Development, South Australia. 
 
 

Table 1: Mean values (standard deviation) of the a priori distributions of rock properties 

Unit Density (kg/m
3
) Magnetic Susc. 

(x10
-5

 SI) 
Thermal Conductivity 

(W/mK) 
Heat Production 

(µW/m
3
) 

Resistivity 
(Log10 Ohm.m) 

Layer 1 2168 (239) 29.45 (7.09) 1.659 (0.20) 0.99 (0.71)  0.5 (0.2) 

Layer 2 2572 (307) 78.03 (132.8) 2.15 (0.05) 1.83 (1.31) 0.9 (0.2) 

Layer 3 2451 (131) 5.65 (12.64) 2.85 (0.05) 1.12 (0.89) 1.99 (0.73) 

Layer 4 2390 (411) 2.49 (6.36)  1.35 (0.10) 1.56 (1.09) 2.17 (0.72) 

Layer 5 2610 (42) 13 (3) 2.45 (0.05) 5 (1) 3.5 (0.5) 

Layer 6 2680 (98) 47.23 (39.76) 2.40 (0.10) 1.74 (1.05) 1.56 (0.25) 
 
 

P(d|θ) — FORWARD MODELS 
 
For each random model drawn from our prior, we could forward model the expected responses of a range of geophysical sensors and 
compare the predictions against observed geophysical data. We had data in the form of Bouguer gravity values at a number of 
discrete locations; total magnetic field intensity at discrete locations; borehole temperature measurements at discrete depths and 
locations; and magnetotelluric soundings at discrete locations. For each of our random geological models, therefore, we solved for 
the expected surface gravitational acceleration; total magnetic field intensity (ignoring any potential remnant magnetism); 
temperature distribution assuming 3D steady state conductive heat flow; and 1D anisotropic apparent electrical resistivity versus 
frequency. Figure 6 shows an example set of forward model results compared against the observations. 
 
Once the suite of geophysical predictions was generated, the next task was to statistically compare the predictions against the 
observations to determine a single ‘likelihood’ value for that particular geological model. The likelihood distributions were Gaussian 
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over the sensor measurements with mean equal to the simulated observation and unknown variance. We placed an inverse gamma 
prior on the unknown variances, and integrated analytically to produce a ‘Normal Inverse Gamma’ (NIG) likelihood.  
 
In principle, there is no restriction on the number or type of forward models that we could include in the joint inversion. There are, 
however, some practical limitations. Firstly, each forward model must directly relate to an observed set of data. There is no value in 
forward modelling (for example) seismic wave speed anomalies if there are no seismic network data against which to compare the 
modelling results. Secondly, to achieve a practical Bayesian inference outcome for a high dimensional problem within a reasonable 
time frame, each forward model should be solvable in less than one second. This tends to rule out 4D models such as (for example) 
those involving fluid flow histories. Thirdly, there are always restrictions on available processing capacity and time that limit the 
‘complexity’, or number of parameters that can be used to define the problem. Each additional data set included in the joint inversion 
requires additional parameters in the geological model to define the relevant rock properties. 
 

 
Figure 6: Left—Example random draw of rock properties, and; Right—Comparison between forward modelled predictions 
(top) and observations (bottom) for gravity, magnetics, ground temperature and apparent resistivity. (Note that the 
temperature charts are arbitrary representations of temperature it about 50 discrete points within the 3D model.) 
 

EFFICIENT SAMPLING AND JOB ALLOCATION 
 
The scope of this paper does not permit a detailed description of algorithms for sampling high dimensional spaces (such as the 
Moomba example with 101 variables described above). Suffice to say that sampling from the posterior of the Moomba model was 
complicated by the fact that the posterior was strongly underdetermined given the available geophysical observations. This means it 
is likely that there will exist distinct combinations of parameter values with high probability, separated by gulfs of low probability. 
Traditional MCMC sampling struggles to identify all probable combinations in this case, as a chain is very likely to get stuck in a 
local mode and be unable to step between probable regions. To combat this, we implemented an MCMC variant called ‘parallel 
tempering’, which uses multiple chains with different acceptance criteria that can exchange states under certain conditions. High 
‘energy’ chains are weighted toward accepting new samples, exploring new parts of the parameter space, and can exchange with 
lower energy states when they discover regions of high probability. Ultimately, the algorithm provides us confidence that we have 
sampled across all disparate but probable regions of the posterior. 
 
Another advantage of parallel tempering when one is interested in optimising computational efficiency is that likelihood 
computations for each chain can be computed in parallel. This allowed us to utilise cluster-computing resources to dramatically 
increase the number of samples computed in a given time. Additionally, because we assumed that the likelihood of each geophysical 
data set could be independently computed for each model drawn from the prior, we were also able to distribute the different sensor 
likelihood models to different cores. 
 
Our implementation of the resulting algorithm, called ‘Obsidian’, takes advantage of cloud computing resources to distribute the joint 
inversion problem over approximately 40 nodes (160 cores) on Amazon Web Services (AWS). Obsidian is implemented in C++, and 
uses the ZeroMQ library to distribute computing jobs to worker nodes from a central server controlling the MCMC (Figure 7). 
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Figure 7: Schematic representation of how computing jobs are allocated between local and remote machines during an 
MCMC geophysical joint inversion. 
 

P(θ|d) — OUTCOMES OR ‘POSTERIOR’ 
 
The outcome, or ‘posterior’, of Bayes’ Theorem in the context of geophysical joint inversion is a probability distribution of 
geological models based on how well they predict the available data. In situations with sparse data, the posterior might reveal many 
disparate families of models with similar probabilities of producing the observed data. In situations with lots of constraining data, 
however, the posterior might confirm that a certain family of models has a demonstrably higher probability of being ‘true’. What we 
are really interested in, however, is what the posterior can tell us about the particular problem in which we are interested. In the 
geothermal context, for example, we might want to know such things as, “What is the expected temperature at a given point in my 
region of interest?”, or “What is the probability that granite exists at any given point within my region of interest?” 
 
Interrogating the model posterior with questions such as these implicitly involves considering all the possible combinations of 
parameters in the model. We can answer questions of this type by ‘marginalising’ over the set of samples obtained from MCMC. 
Marginalised distributions correspond to weighted averages of the property of interest given the parameters of each sample. Because 
the samples from the MCMC algorithm statistically represent the posterior distribution, the probability of having drawn a sample is 
proportional to its probability density in the distribution. In this case we can equally weight the samples. The answer to the first 
question can be found, therefore, from the mean of the distribution of temperatures across all the MCMC samples. Considerable 
additional value is gained by quantifying the uncertainty in terms of the standard deviation in the distribution (Figure 8). We can 
immediately see where the data provide maximum confidence in the expected temperature (blue regions of the right hand image in 
Figure 8) and where we lack sufficient information for a confident temperature prediction (orange to red regions). 
 
 

     
Figure 8: Left—The mean, or expected, temperature (°C) at each point in the Moomba model space. Right—The standard 
deviation (°C) in the expected temperature. 
 
 
Regarding the second question above, the actual answer is a scalar value and does not express any of the specific parameters defining 
the model. For example, if 60% of our MCMC posterior sample includes granite at a particular depth and location, then the 
probability of granite being there is 0.6 (given the data and our prior distributions). Figure 9 illustrates this example by showing the 
probability that granitic basement occurs at any given point within our model space, given the data we had available at the time and 
the constraints we placed on our prior. 
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Figure 9: The probability that granitic basement exists at any given point within our model space. Red = granitic basement 
probably does exist; blue = granitic basement probably does not exist; green = existing data are insufficient to discriminate 
between granitic and non-granitic basement. Note that probability is represented by both colour and transparency. 
 
 
Additionally, we can apply ‘non-trivial simulations’ on each sample, and the distributions of the derived property will be 
representative. This allows us to answer a broader set of questions such as, “What is the probability that granite exceeding 270°C 
exists at any given point within my region of interest?” The marginalisation propagates the uncertainty from the parameter space 
samples. Results can be visualised in the same way as above (e.g. Figure 10). 
 

 
Figure 10: The probability that granitic basement exists and exceeds 270°C at any given point within our model space. The 
cross section is included to show detail. 
 
 
While the images in Figures 8, 9 and 10 look vastly different to the outcomes of conventional geophysical inversions that many 
geoscientists would be familiar with (ie visual approximations of ‘real’ geological architectures), they arguably provide more useful 
information upon which to base investment decisions. If the primary goal of a company is to drill into granitic basement to intersect 
temperatures >270°C, then a well could be confidently planned to intercept the dark red zone on Figure 10. Furthermore, if the 
company preferred for some reason (e.g. limited extent of licence boundaries) to drill into a zone shown as green or yellow, it might 
choose to first carry out additional surface surveys to increase its confidence that the well would hit the desired target. 
 
Figure 11 provides one last example to highlight the additional value that Bayesian inference can provide over conventional inversion 
techniques. It directly compares two predictions of the location of granitic basement beneath the Moomba region. The left hand map 
shows the deterministic outcome of a conventional gravity inversion by Geoscience Australia. It shows regions with predicted 
granitic basement (red) and regions without (white). The right hand map shows a probabilistic prediction for the same region based 
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on Bayesian joint inversion of gravity, magnetics, MT and temperature data, where red areas are ‘high probability’ and blue areas are 
‘low probability’. 
 

 
Figure 11: Two predictions of the location of sub-cropping granitic basement at 3500 m beneath the Moomba region. Left—
Deterministic prediction by Geoscience Australia based on conventional 3D inversion of gravity data “using geological data 
to constrain the inversions” (Meixner and Holdgate, 2009). Right—‘Probability of granitic basement’ prediction by NICTA 
using Bayesian joint inversion of gravity, magnetics, MT and temperature. 
 
 
While there is an obvious strong correlation between the two maps, the right hand map contains far more information 
about the confidence of the predictions. Of particular interest is the area in the northeast quadrant of the maps where 
Geoscience Australia predicts ‘no granite’ between two granitic sub-crops. The right hand map charts this area in green, 
indicating that there is, in fact, insufficient information to determine whether there is granite sub-crop or not. 
 

CONCLUSIONS 
 
A Bayesian approach to joint geophysical inversion can reveal the full probabilistic range of geological models that satisfy existing 
data. The Bayesian framework, in principle, allows joint inversion of any number of independent data sets. The results can be 
interrogated to provide a much deeper and richer understanding of the true state of knowledge compared to conventional inversion 
methods. Future exploration activities can be confidently planned around reducing uncertainties in key parameters or discriminating 
between different families of likely geological models. Current computing resources coupled with efficient sampling algorithms can 
provide solutions for geological models with up to 1000 degrees of freedom within reasonable timeframes. That number will grow as 
computing resources continue to increase in power and efficiency. The challenges around implementing Bayesian inference joint 
inversion relate to making the tools known, available and usable to a wide user base. 
 
The ‘Obsidian’ software is open source and can be downloaded from https://github.com/NICTA/obsidian. 
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