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SUMMARY 
 
Full waveform inversion (FWI) is a process in which seismic data in the frequency or time domain are being fitted by changing the 
velocity of the media under investigation. The problem is nonlinear, and therefore, optimization techniques have been used to attempt 
and find a geological solution to the problem. The main problem in fitting the data is the lack of low special frequencies. This 
deficiency often leads to a local minimum and to non-geologic solutions. In this work we discuss how to obtain low frequency 
information that can augment FWI. We explore two techniques, the first, travel time tomography and the second, controlled-source 
electromagnetics. We then discuss a framework for joint inversion and show that by considering these problems jointly we are able to 
steer the direction of FWI towards the global minimum.    
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INTRODUCTION 
 
Full waveform inversion (FWI) is a process in which the velocity of the earth is estimated by using measured wave-field data. The 
estimation is done by fitting the field data to computed data, that are a simulation of the Helmholtz equation (in frequency), or the 
wave equation (in time). The data fitting requires some optimization algorithm, typically some descent algorithm that gradually 
reduces the misfit. To keep the velocity model geologic, regularization is typically added to the process. However, while the method 
has been investigated over 30 years ago by Tarantola (1987) with little success, it has regained new traction when computing power 
and algorithms have been investigated and we can now handle bigger volume of data using sophisticated algorithms (see for example 
Pratt (1998, 1999), Krebs et-al (2009), Epanomeritakis et-al (2008), and Biondi and Almomin (2014)). 
 
Nonetheless, solving the FWI problem is difficult in practice and one typically converges to a local minimum that is not geologically 
feasible. There are two main problems to consider when discussing the convergence behaviour of FWI algorithms. First, since the 
problem contains many local minima, standard optimization techniques converge only to a local minimizer of the data regardless to 
presence of low frequencies in the data. Second, if the data do not contain low frequencies, then there may not be information in the 
data to lead it to a minimizer that geologically makes sense. If low frequencies exist in the data then it is possible to use a process of 
frequency continuation in order to obtain the global minimizer. This process is known to be both efficient and stable in producing 
FWI results. However, most acquisition still does not acquire sufficiently low frequencies in order to use the process of frequency 
continuation.  
 
A number of authors have attempted to address the problem of the lack of low frequencies by changing the misfit function from least 
squares to some other misfit. However, there is a fundamental problem with any such approach when low frequency data are missing. 
To explain, consider that the forward problem is F(m), where m is the earth’s model and F is the forward modelling operator. The 
lack of sensitivity to low special frequencies implies that F(m) ≅ F(m+s) where s is some smooth perturbation to the model. It 
implies that the sensitivity matrix J=∇F has an approximate null space that can be characterized by low frequencies. Now, consider 
any objective function S(F(m),d). The common one is the least square one S(F(m),d) = ||F(m)-d||2 but others have been suggested in 
the past (see Virieux et al. (2009) and Warner et al. (2013) for a review). The gradient of the objective function is g = J *∇S and 
since J does not contain low frequencies the gradient will also not contain low frequencies. Since a descent direction is based on the 
gradient, it is impossible to recover low frequencies in the model. This fundamental observation suggests that in order to find a 
geologically feasible minimizer to the data, the physics of the problem needs to be augmented with low frequency information. This 
low frequency information can then steer FWI in the direction of geologically reasonable models. 
 
In this work we focus on two such techniques. First, we use travel time tomography to replace the low frequency component in the 
data. We show that by jointly inverting the travel time data and the FWI data it is possible to obtain a model that fits both data sets 
and therefore, obtain low special frequencies. Second, we show that it is possible to augment the inversion using Controlled Source 
Electromagnetic (CSEM) data that also yields the low frequency components in the data. Since CSEM images conductivity, we 
require an objective function that either translates conductivity to velocity or uses the structure in the conductivity model to yield a 
similar structure in the velocity model.  
 
In the following we present a methodology and a workflow that allow us to use augmented data in order to fit FWI data, starting from 
a very uninformative starting point.  
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METHOD 
 
We consider the forward problem that is given by the Helmholtz equation for a constant density media  
 

 
 
Here, u is the wavefield, m is the model for the squared slowness, and ω is the frequency. The equation is given with absorbing 
boundary conditions to mimic the propagation of the wave in an unbounded domain.  
 
Next, we consider the data, d, as an inner product of the form    

 
 
where pr is a sampling operator that measures the field u, at some location xr and (·, ·) is an inner product. The data is typically noisy 
and we assume that the noise, ε, is iid, Gaussian and with variance σ. Given data that is collected in a number of receiver locations 
and a number of frequencies we aim to estimate the model, m. This is done by solving the following regularized least squares 
problem: 

  

           
 
Here, R(m) is a regularization term (we use either smoothness or total variation, while mL < 0 and mH > 0 are bounds that keep the 
model physical). To solve the optimization problem a variety of methods are typically used. First order methods such as nonlinear 
conjugate gradient and limited memory BFGS (Nocedal and Wright, 1999) have the advantage of low memory but converge slowly. 
Our method of choice is the Gauss Newton method (Pratt et al., 1998), which incorporates curvature information and converges 
faster, especially if the noise level is low.  
 
Solving the problem for all frequencies at once typically yields local minima. Therefore, it is common to solve the problem by 
frequency continuation, solving first the lowest frequency obtaining a model m(ω1) and then, solving again the problem for 2 
frequencies, starting from m(ω1), and continuing forward by adding more frequencies, each time starting from the previous solution. 
This yields a stable process that converges to the global minima of the objective function. Nonetheless, in the absent of low 
frequencies this process cannot be used, and convergence to local minima is often observed. To alleviate this problem we propose a 
different process. It is fairly well known, that assuming that the wave field has a solution of the form u = a(x, ω ) exp(iω T (x)), 
where T  is travel time, and substituting it into the Helmholtz equation  we obtain the Eikonal equation for high frequencies  
 

 
 
This equation models the first arrivals of the waves. Since the travel time is an integral of the model over the ray path, its Jacobian 
with respect to the model contains mainly low frequencies. Thus, a way to overcome the lack of low frequencies in the data, d, is to 
extract it from the travel time, T. Travel time tomography has been considered by Benaichouche et al., (2015) and by Li et al., 
(2013). Here we use the Fast Marching method to solve the forward problem and compute the sensitivities directly. 
 
A second way to obtain low frequencies in the data is by using electromagnetic imaging, and in particular Controlled Source 
Electromagnetics (CSEM) (Haber, 2014). In this problem the forward problem can be modelled by solving Maxwell’s equations 
 

 
 
Here, σ is the conductivity that is inverted for by measuring the electric field, E. In order to use CSEM as a second modality, one 
requires using a relation that connects the conductivity to seismic velocity. In this work we have used Gassmann’s equation 
(Berryman 2009) to obtain such a relation. Since electromagnetic fields represent a decaying wavefield, the sensitivity with respect to 
the data contains mainly smooth components and it is “blind” to high special frequency variations in the model. Thus, the CSEM 
method supplements seismic data that is not sensitive to smooth perturbations in the model.  In many cases, CSEM is preferred to 
travel time data as it is sensitive to deeper parts of the model and is not affected by low velocity zones. 
 
The three techniques are put together through the following optimization problem: 
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The optimization problem is then solved using the Gauss-Newton method where we start by fitting the Eikonal and/or the CSEM 
data and then augment the FWI data once low frequency components of the model have been recovered. 
 
 

RESULTS 
 
To experiment with our model we use the SEG salt model, plotted in the left panel of Figure 1 as a test case. The model is discretized 
using 512 x 140 cells with dimensions of 15.6m x 15.6m. There are 30 equally spaced sources and 140 receivers placed on the 
surface and the data is collected at different frequencies ranging from a very low frequency of 0.75 Hz to 14 Hz. The low frequencies 
are not used for all experiments and we assume to have it so we can compare inversion results with and without it.  We start all 
inversions from a gradient velocity model shown in the right panel of Figure 1. The data is contaminated with 1% noise that is 
Gaussian.   

 
Figure 1: SEG velocity salt model (left panel) and velocity starting model (right panel).   

The results of the 3 different experiments are presented in Figure 2.  

 
Figure 2: First iteration (left panel) and final inversion (right panel) of a) all frequencies (low and high), b) with first two 
frequencies missing and c) with the Eikonal equation replacing the first two frequencies. 
 
The left column of the figure shows the inversion result after the first iteration (using the lowest frequency or the Eikonal). The right 
column shows the final result of the inversion. When low frequency is available, (first row) a blurred representation of the model is 
obtained in the first iteration. This blurred version is then sharpened when more frequencies are added. When the low frequencies are 
missing, the lowest frequency yields high frequency features in the initial model. Since high frequencies do not contain low 
frequency content, the inversion does not recover and the results are far from the true model. Finally, when the Eikonal is used to 
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replace the low frequency data, a low frequency representation of the model is also obtained. Even though this representation is 
incorrect at depth, the additional frequencies manage to overcome this and the final result is equivalent to the result obtained by using 
the low frequency data.  
 

 
 

Figure 3: Initial conductivity model obtained by using CSEM data. Note the identification of the bottom of the salt body. 
 
In Figure 3 we show the inversion results obtained by simulating a CSEM experiment over the same domain as before to show that 
CSEM data can replace low frequency data. As can be observed, the salt body is placed at the right location and even its bottom is 
imaged with some accuracy, which gives the FWI a good starting model in order to converge to an improved result.  
 
 

CONCLUSIONS 
 

In this work we have explored a methodology that aids full waveform inversion to converge to the global minimum in the absence of 
low frequency data. The method is based on the extraction of travel time from high frequency data or collecting CSEM data and 
using either the Eikonal or Maxwell’s equations in order to model the travel time or conductivity. We use these augmented physical 
experiments instead of low frequency data to jointly invert with the rest of the data using a frequency continuation process. Since 
both travel time and CSEM inversions are sensitive to low spatial frequencies modes in the model, they yield an initial model that 
enables a recovery that is a close approximation to the true model. Furthermore, since we jointly invert the full waveform and travel 
time/CSEM data, our final model is consistent for both physical models.  
 
While our method seems to be robust in the presence of noise, it has two main limitations. First, long offset data must be recorded in 
order to have a meaningful first arrival inversion. Similarly, CSEM data needs to be collected over the same domain as the seismic 
one in order to image the low frequencies using Maxwell’s equations. Second, our approach requires travel time picking and EM 
processing. This increases the cost of FWI and requires codes that can handle both EM and seismic inversion preferably within the 
same computational framework.  
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