A robust gradient for long wavelength FWI updates

Jaime Ramos-Martinez  
Petroleum Geo-Services Inc.  
West Memorial Place I  
15375 Memorial Drive, Suite 100  
Houston, TX, 77079, USA  
jaime.ramos@pgs.com

Sean Crawley  
Petroleum Geo-Services Inc.  
West Memorial Place I  
15375 Memorial Drive, Suite 100  
Houston, TX, 77079, USA  
sean.crawley@pgs.com

Kathy Zou  
Petroleum Geo-Services Inc.  
West Memorial Place I  
15375 Memorial Drive, Suite 100  
Houston, TX, 77079, USA  
kathy.zou@pgs.com

Alejandro Valenciano  
Petroleum Geo-Services Inc.  
West Memorial Place I  
15375 Memorial Drive, Suite 100  
Houston, TX, 77079, USA  
jaime.ramos@pgs.com

Lingyun Qiu  
Petroleum Geo-Services Inc.  
West Memorial Place I  
15375 Memorial Drive, Suite 100  
Houston, TX, 77079, USA  
lingyun.qiu@pgs.com

Nizar Chemingui  
Petroleum Geo-Services Inc.  
West Memorial Place I  
15375 Memorial Drive, Suite 100  
Houston, TX, 77079, USA  
nizar.chemingui@pgs.com

Andrew Long*  
PGS Australia Pty Ltd  
Level 4, IBM Centre  
1060 Hay Street  
West Perth, WA, 6005, Australia  
andrew.long@pgs.com

SUMMARY

We introduce a robust method to produce long wavelength updates in gradient-based Full Waveform Inversion (FWI). The solution introduces dynamic weights in the velocity sensitivity kernel derived from impedance and velocity parameterization of the classical objective function. The new kernel implementation effectively eliminates the migration isochrones produced by the specular reflections, enhances the low wavenumber components in the gradient in heterogeneous media, and is able to deliver velocity updates beyond the penetration depth of diving waves. We use synthetic examples to illustrate how this dynamic weighted FWI gradient successfully recovers the velocity from pre-critical reflections. We also show with dual-sensor streamer data from deep-water Gulf of Mexico how the dynamic weighted FWI gradient can combine both transmitted and reflected energy in a global FWI scheme.

Key words: FWI, RTM, velocity model, resolution, dynamic weights.

INTRODUCTION

Full waveform inversion (FWI) is the tool of choice for building high-resolution velocity models in shallow water settings (e.g. Sirgue et al., 2009; Zou et al., 2014). In this scenario, recorded refractions and diving waves allow FWI to resolve small-scale geologic features up to the deepest turning point. For deeper updates, FWI needs to rely on reflected energy to update the model. However, by using conventional gradient computations, FWI can only reconstruct the high-wavenumber components of the model unless the recorded data has ultra-low frequency content.

We produce long wavelength velocity updates at greater depths by decomposing the gradient into separate wavenumber components (e.g., Xu et al., 2013; Alkhalifah, 2015; Zhou et al., 2015). The fundamental idea is to derive a gradient where the relatively high wavenumber migration isochrones corresponding to the specular reflections are removed and the low wavenumber energy is preserved. Our new approach inserts dynamic weights derived from an impedance-velocity parameterization into the velocity sensitivity kernel. This approach eliminates the migration isochrones that dominate the gradient in heterogeneous media, thereby accommodating low wavenumber updates in the velocity model beyond the penetration depth of diving waves. We first introduce the new FWI gradient and provide insight into its physical interpretation, and then we show synthetic and field data examples where we use the new solution to build high resolution velocity models.

THEORY

Conventional FWI (Tarantola, 1984) solves a nonlinear inverse problem by matching modelled seismic data to recorded field data. The matching is quantified by the residuals of a least-squares misfit function, and the model update is computed as a scaled representation of its gradient. In the case of an isotropic acoustic medium, parameterized in terms of bulk modulus and density ($\kappa$, $\rho$), the gradient depends on the sensitivity kernels for $\kappa$ and $\rho$ that can be written as (Tarantola, 1984):

\[
K_\kappa(x) = \frac{1}{\kappa(x)} \int \frac{\partial S(x,t)}{\partial t} \frac{\partial R(x,T-t)}{\partial t} dt \quad \text{and} \quad K_\rho(x) = \frac{1}{\rho(x)} \int \nabla S(x,t) \nabla R(x,T-t) dt
\]  

(1)
where \( \kappa(x) = \rho(x)v^2(x) \) is the equation that relates the bulk-modulus to velocity, and \( S(x,t) \) and \( R(x,t) \) are the source and residual wavefields. The sensitivity kernel for a particular parameter measures the variation in the misfit function caused by a change in that parameter while holding the others fixed (Tromp et al., 2005). Figures 1a and 1b show the sensitivity kernels in a synthetic model consisting of a single layer overlying a homogeneous half-space.

Douma et al. (2010) alternatively presented velocity and impedance parameterizations of the misfit function. The velocity and impedance kernels \((v,z)\) corresponding to the new parameterization can be written as:

\[
K_v(x) = K_x(x) - K_\rho(x) \quad \text{and} \quad K_z(x) = K_x(x) + K_\rho(x) \tag{2}
\]

The impedance kernel comprises the high wavenumber components of the velocity field, while the velocity kernel is restricted to low wavenumbers (Luo et al., 2009). This realization gives an intuitive insight into the use of different kernels for different applications. The impedance kernel is useful for RTM where a high-resolution model is desirable and the velocity is fixed. On the other hand, the use of the velocity kernel is ideal for FWI where the low wavenumber components of the gradient are preferred and the high wavenumbers associated with reflections are problematic.

Whitmore and Crawley (2012) used the impedance kernel to derive an RTM imaging condition that removes unwanted back-scattered noise. Their examples used heterogeneous models and highlight the importance of dynamically weighting the different components of the impedance kernel to achieve optimal removal of the low wavenumber artifacts. Indeed, Figure 1c below shows the result of weighting the components from Figures 1a and 1b to produce an RTM impulse response free of back-scattered noise.

Similarly, an FWI gradient can be derived by dynamically weighting the velocity kernel in Equation 2. The dynamic weights of Whitmore and Crawley (2012) can be adapted to alternatively remove the high wavenumbers from the FWI gradient in a heterogeneous media. By assuming constant density the new FWI gradient can be derived as:

\[
G(x) = \frac{1}{2A(x)} \left\{ \int W_1(x,t) - \frac{1}{v^2(x)} \frac{\partial S(x,t)}{\partial t} \frac{\partial R(x,T-t)}{\partial t} - W_2(x,t) \nabla S(x,t) \cdot \nabla R(x,T-t) \right\} dt \tag{3}
\]

where the dynamic weights \( W_1(x,t) \) and \( W_2(x,t) \) are designed to optimally suppress the migration isochrones, and \( A(x) \) is the illumination term. Figure 1d is produced using Equation 3 and illustrates how the migration smile has been removed while the low wavenumber energy has been preserved.

Figure 1: Sensitivity kernels, of a source-receiver pair, for the model a single layer overlying a homogeneous half-space: (a) bulk-modulus, (b) density, (c) Impedance, and (d) velocity.

Figure 2 shows the conventional FWI gradient (2a) compared to the modified gradient from Equation 3 (2b), for a model with a linearly increasing velocity with depth. The modified gradient in Equation 3 removes the migration smile, but preserves all the low wavenumber components associated with the diving waves (‘bananas’) and back-scattering (‘rabbit ears’).
SYNTHETIC EXAMPLES

We designed a 2D synthetic example consisting of five homogeneous layers (Figure 3). The data has maximum offset of 4 km, so only pre-critical reflections are used in the inversion. The starting velocity model for FWI contained errors up to 100 m/s, and the inversion was performed on a frequency band of 3-5 Hz. Figures 3b and 3c show the results of the inversion using the conventional FWI gradient and the dynamic weighted FWI gradient, respectively. Results from the new FWI gradient are accurate and do not suffer from the high wavenumber artifacts observed on the conventional FWI update.

We then designed a second example that uses a synthetic dataset inspired from a real earth model (Figure 4a). It consists of a smooth background velocity model that includes a meandering channel at 4 km depth. The maximum offset in the data is 4 km and the inversion was performed using a frequency band between 3-7 Hz. The background velocity model was used as starting model for FWI. Figure 4c shows the velocity model derived from the new gradient. Note that the 4km deep channel is nicely recovered using the deep reflections from the data with limited offsets up to 4km.

FIELD DATA EXAMPLE

We compared the dynamically weighted FWI gradient with the traditional FWI on field data from the deep-water Gulf of Mexico (DeSoto Canyon). The data were acquired with dual-sensor streamers and with a maximum offset of 12 km. The FWI frequency band used was 3-7 Hz. No particular mutes or event selection were used, therefore all recorded data were employed during the inversion. Figure 5a shows an overlay of the initial velocity model on the RTM image, and Figures 5b and 5c show the updates from the conventional and the dynamically weighted gradients, respectively. The new FWI gradient (Figure 5c) recovers a high resolution velocity model without the imprints of the seismic reflectivity most obvious on the conventional FWI result (Figure 5b), and in a manner that is free from high wavenumber artifacts.

CONCLUSIONS

We present a novel solution for recovering the long-wavelength features in gradient-based FWI. The method uses all types of wave propagating modes in the earth to recover high-resolution velocity models. The new FWI gradient enables reliable updates deeper than the maximum penetration depth of diving waves. Therefore it reduces the dependency on recording ultra-long offsets in seismic exploration.

ACKNOWLEDGMENTS

We thank Dan Whitmore for helpful discussions, and PGS for permission to publish the results used here.
Figure 5: Dual-sensor streamer data from deep water Gulf of Mexico: (a) initial velocity model overlaid on the RTM, (b) image conventional FWI model update, and (c) dynamic weighted FWI model update.

REFERENCES


