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SUMMARY 
 
Time-lapse (4D) seismic data sets have proven to be extremely useful for reservoir monitoring. Seismic-derived impedance 
estimates are commonly used as a 4D attribute to constrain updates to reservoir fluid flow models. However, 4D seismic 
estimates of P-wave impedance can contain significant errors associated with the effects of seismic noise and the inherent 
instability of inverse methods. These errors may compromise the geological accuracy of the reservoir model leading to 
incorrect reservoir model property updates and reservoir fluid-flow predictions. To evaluate such errors and uncertainties we 
present a time-lapse study based on a 3D reservoir model example, thereby exploring a number of inverse theory concepts 
associated with the instability and error of coloured inversion operators and their dependence on seismic noise levels. In this 
example, we use an oilfield benchmark case based on the Namorado Field in Campos Basin, Brazil. We introduce a histogram 
similarity measure to quantify the impact of seismic noise on maps of 4D seismic amplitude and impedance changes as a 
function of S/N levels, which indicate that amplitudes are less sensitive to 4D seismic noise than inverted impedances. The 
root-mean-square errors in the estimates of water saturation changes derived from 4D seismic amplitudes are also smaller than 
for 4D seismic impedances, over a wide range of typical seismic noise levels. These results quantitatively demonstrate that 
seismic amplitudes can be more accurate and robust than inverted seismic impedances for quantifying water saturation changes 
from 4D seismic data, and emphasize that seismic amplitudes may be more reliable to update fluid-flow model properties in 
the presence of realistic 4D seismic noise. 
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INTRODUCTION 

Time-lapse (4D) seismic analyses can be used to better understand subsurface fluid flow and therefore oilfield behaviour, 
improve reservoir performance, and assist in reservoir management decisions. These techniques have been applied successfully 
to numerous oilfields throughout the world (Lumley 2001; Calvert 2005; Johnston 2013), and have provided insight into 
changes in fluid saturation and pressure after the onset of oil production. This information has proved invaluable for aiding in 
the development and calibration of fluid-flow models that are essential for evaluating and forecasting reservoir performance 
(Dong & Oliver 2003; Ementon et al. 2004; Oliveira et al. 2007). Calibrating fluid-flow models traditionally relies heavily on 
very sparse well data (Oliver et al. 2008). However, changes in time-varying dynamic properties such as water saturation and 
pore pressure, derived from time-lapse (4D) seismic techniques, can provide more robust and reliable volumetric constraints 
between wells than those developed by interpolating borehole properties (Simm & Bacon 2014). Therefore, calibrating fluid-
flow models by incorporating both seismic and well data can improve both their reliability and consistency with geological 
models of the producing oil field.  

Information from 4D seismic image volumes can be presented in a number of different domains and various stages of analyses; 
for example, as amplitude information obtained directly from seismic data or as acoustic impedance information derived 
through seismic inversion. Subsequently, data in either of these domains can be used to derive fluid-flow model updates by 
iteratively comparing forward modelled and observed data through application of inverse and optimization theory (Parker 
1977; Oliver et al. 2008). Updating reservoir model properties using 4D seismic is a difficult non-linear problem with 
significant uncertainties, not least of which is related to 4D seismic data quality. The quality of seismic data depends directly 
on signal-to-noise ratio (S/N) levels and, in 4D studies, especially on the repeatability of the seismic surveys over time. While 
data in the seismic amplitude and impedance domains are available to integrate seismic-derived attributes into the update of 
reservoir properties, their respective characteristics are subject to different modelling assumptions and data-handling 
workflows, with each domain exerting a different influence on the quality of the resulting fluid-flow models (Sagitov & 
Stephen 2012).  

The seismic impedance domain is a popular choice for integrating seismic and reservoir engineering data. This is because local 
impedance estimates can be computed at each reservoir model grid cell, through a large but highly parallelisable cell-by-cell 
inverse problem that is easily integrated into the reservoir property updating workflow (Stephen and Macbeth 2006; Sagitov 
and Stephen 2012). However, there are significant issues with using seismic impedances because they require applying a 
nonlinear seismic inversion step that is inherently unstable and may introduce significant uncertainties into the resulting 
impedance estimates. These issues are compounded by the use of theoretical petro-elastic models (PEM) for seismic reservoir 
modelling, which introduce additional uncertainties due to modelling assumptions, measurement errors and the inherent 
heterogeneity of available petrophysical and fluid data (e.g., core, logs, PVT) (Mavko et al. 2011). Propagating these combined 
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errors in a nonlinear forward and inverse problem generates a highly variable output, thus it is crucial to estimate the associated 
uncertainties when using 4D attributes for updating reservoir models. To account for these issues, an uncertainty analysis 
should be carried through all procedure steps (Lumley 2006). Although most inversions performed are deterministic (Landa & 
Kumar 2011), the corresponding estimates of fluid saturation changes may lead to erroneous reservoir property updates in 
fluid-flow models as well as increasing the uncertainty in predictions of oil reservoir performance and financial risk 
management. 

The seismic amplitude domain is an alternate choice to impedance for integrating seismic and reservoir-engineering data. 
Amplitude information is a primary attribute derived from image-processed seismic data and, unlike the acoustic impedance 
domain, amplitude-based analyses do not require inversion and are thereby free from additional uncertainties related to inverse 
problem instability and non-uniqueness. Thus, amplitude-domain procedures typically are more straightforward and stable than 
impedance-domain approaches and allow for more efficient tracking of corresponding uncertainties. However, amplitude-
domain approaches can be less common than impedances due to the difficulties in updating 3D fluid-flow model grids directly 
from 2D amplitude maps or from the low vertical resolution seismic waveform information extracted from 3D seismic trace 
volumes. 

One important issue is the effect of 4D seismic data noise on procedures to estimate reservoir properties as this noise is usually 
assumed to be minor or non-existent (Lumley & Behrens 1997; Davolio et al. 2012; Sagitov & Stephen 2012) ; however, non-
repeatable 4D noise can be an important consideration when choosing the best domain in which to integrate seismic, borehole 
and reservoir engineering data. The effects of noise are a ubiquitous issue in 3D and 4D seismic acquisition, processing and 
inversion (Lumley & Behrens 1998; Yilmaz 2001) . In particular, 4D seismic techniques are very sensitive to acquisition non-
repeatability and a high S/N ratio and level of repeatability are paramount for ensuring high-quality analyses (Lumley and 
Behrens 1998). Thus, two important questions are: Can 4D seismic noise be incorrectly interpreted as true dynamic changes 
within the reservoir? And if so, how robust are amplitude and impedance work flows in the presence of noise? 

We demonstrate that for 4D seismic data exhibiting a range of commonly observed S/N ratio values, the amplitude domain is a 
more accurate and robust choice than the impedance domain for quantifying fluid saturation changes. We illustrate this by 
analysing the changes in seismic image amplitudes and seismic acoustic impedances as a function of water saturation changes 
(ΔSw) and S/N ratio levels. Using principles from information theory (Rubner et al. 2000), we present an innovative method 
for cross-domain comparison based on the histogram of amplitude (ΔΑ) and impedance (ΔΙp) changes. We also introduce a 
method for estimating errors in water saturation changes as a function of S/N ratio. These techniques allow us to evaluate the 
consistency of seismically derived attributes across amplitude, impedance and water saturation domains using an unbiased 
comparison method. 

This paper applies these techniques  in a time-lapse seismic scenario by presenting a 3D case study based on a benchmark 
fluid-flow model built on observations from the Namorado Field in Campos Basin, Brazil (Avansi & Schiozer 2015). We then 
quantify the errors in water saturation estimates using 4D seismic amplitude data versus 4D seismic impedance inversion 
values. The paper concludes with a discussion on the implications of these results for 4D seismic work flows to update 
reservoir properties and fluid-flow models. 

NUMERICAL EXAMPLE 

Benchmark models commonly play an important role in the testing of methodologies for the calibration of fluid-flow models. 
These models also provide the opportunity to conduct realistic tests in 3D reservoir scenarios. The heterogeneity of these 
models can generate changes in amplitude and impedance maps that would present complex trends and increased uncertainty 
of the inversion results derived from them. We build on the analysis of the above 1D example by using the benchmark model 
UNISIM-H (Avansi & Schiozer 2015) to test 4D seismic changes in amplitude/impedance estimates as a function of ΔSw and 
S/N levels.  

UNISIM-H MODEL 
UNISIM-H is a synthetic black-oil fluid flow model constructed as part of a benchmark case for history matching and 
uncertainty quantification. This model was developed for studies in an advanced stage of reservoir production based on 
observations from the Namorado field in Campos Basin, Brazil, including the structural geological framework, facies models 
and petrophysical constraints derived from seismic and well log data. Porosity was modelled using a sequential Gaussian 
simulation, while correlations between permeability and porosity estimated from core were used to specify reservoir 
permeability. The UNISIM-H model has 36,739 active cells at a grid cell interval of [Δx, Δy, Δz] = [100, 100, 8] meters.  

We generate 4D seismic data using the convolutional method by assuming that the baseline and monitor surveys were acquired 
pre-production and 4018 days (11 years) after the start of production, respectively. The UNISIM-H model includes a scenario 
where water injection to maintain reservoir pressure was started after 1979 days (5.4 years) of production. Significant ΔSw 
saturation change occurs due to the injected water pushing oil down dip towards the aquifer. Figure 1 illustrates the changes in 
the baseline and monitor water saturation distributions from the UNISIM-H model. Having specified these scenarios we can 
now define our procedure for addressing our main time-lapse study goal of quantifying changes in amplitude, impedances and 
water saturation, as well as the respective uncertainties associated with seismic data noise.. 

SEISMIC MODELING  
We start applying a petro-elastic modelling flow to extract both static (i.e., porosity, net-to-gross, etc.) and time-varying 
dynamic (i.e., water saturation, pressure, etc.) UNISIM-H data at the times of baseline and monitor seismic acquisitions. We 
apply standard Gassmann fluid substitution equations (Lumley 1995; Mavko et al. 2011) to estimate the P- and S-wave 
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impedance volumes. As input to this model we use net-to-gross estimates to infer shale percentage at each grid cell and invoke 
the Hertz-Mindlin model to derive the pressure sensitivity of dry bulk and shear rock moduli (Avseth et al. 2011). We use the 
Batzle-Wang (1992 Did you wish to add this as a reference?) relationships to model the fluid response to pressure and 
temperature, which we subsequently hold constant between surveys to help isolate the effects of ΔSw on the amplitude and 
impedance inversion estimates. However, we emphasize that these variables change in general during real scenarios and 
thereby affect the petro-elastic model outputs.  

We convert the UNISIM-H model from depth to two-way travel time (TWT) assuming a constant average P-wave velocity of 2.5 km/s. We calculate reflection coefficients (RC) from the P-wave “acoustic” impedance estimates using the normal 
incidence approximation per equation (1).  We convolve the computed reflection coefficients with a 50Hz Ricker wavelet to 
generate the synthetic 3D seismic data image volumes. We then use additive Gaussian random noise traces filtered using this 
wavelet to generate noisy seismic data volumes with commonly observed S/N ratios (i.e., 10, 5 and 2) (Lumley and Behrens 
1997). We repeat this modelling procedure to generate the monitor survey data.  

4D SEISMIC INTERPRETATION 
Undertaking a 4D seismic interpretation requires computing 4D seismic data attributes such as amplitudes and impedances 
from the baseline and monitor data. We first examine changes in their respective modelled amplitudes and in the inverted 
relative impedance estimates used to derive ΔSw. We assume that the seismic data image polarity is equivalent to a zero-phase 
wavelet, and use the convention that positive values correspond to positive reflectivity and 4D differences are defined as 
monitor minus baseline data (Lumley, 1995, 2001). We extract the RMS value of each attribute separately for both the baseline 
and monitor surveys within a time window centred on a seismic surface conforming to the base reservoir horizon at a TWT of 
2.75s. We then compute and interpret the 4D seismic amplitude difference maps by subtracting the baseline amplitude map 
from the monitor map. 

Figure 2a presents the RMS map of the true ΔSw extracted from the fluid-flow model. Qualitatively, we observe that these 
changes correlate well with the S/N = 10 amplitude difference map in Figure 2b. Figure 2c shows a map of the S/N = 10 
impedance changes resulting from the inversion of the S/N = 10 amplitude volumes. These results mirror the main features of 
the water displacement map; however, by visual inspection they are more poorly correlated than those calculated from the 
amplitude results (Figure 2b). Comparing the S/N=10 amplitude map (Figure 2b) with the true ΔSw (Figure 2a) we observe 
regions where water saturation is erroneously predicted to increase. Errors are more numerous and of higher magnitude in the 
impedance map (Figure 2c) than those in the amplitude map. These errors are associated with the inversion operator instability 
providing incorrect water location and volumetric estimates. Therefore, based on qualitative observations we see that the 
presence of noise in 4D seismic data may lead to erroneous interpretations. However, qualitative analysis is insufficient for 
fully understanding the full magnitude of the problem.  

QUANTITATIVE ANALYSES 
The results above highlight that a quantitative analysis of the impact of noise level in 4D seismic data is important to derive 
reliable error estimates for reservoir property changes. Also, determining the most accurate and robust domain to integrate 
seismic and reservoir engineering data is fundamental to update reservoir properties using 4D seismic data. To address this, we 
quantify the differences between RMS maps by cross-plotting the 4D seismic attribute and ΔSw maps, and evaluate amplitude 
and impedance behaviour as a function of ΔSw and S/N levels. 

Figure 2d presents a cross-plot of ΔRC and ΔA against the ΔSw map as a function of noise levels. We observe a linear trend 
proportional to saturation as well as a scattering of RC due to the heterogeneity of reservoir properties (e.g., porosity, net-to-
gross) as incorporated in the PEM. Note that for ΔSw > 0.25 the amplitudes diverge from the reference trend provided by the 
reflection coefficients. Reflection coefficients theoretically should indicate the true locations of the interfaces between two 
lithologies. However, in practice there are a number of user-defined choices (e.g., seismic image processing, amplitude picks 
and time windows) that affect the location of RC estimates from seismic waveform data and, therefore, the accuracy of the 
RMS maps. The very good correlation of amplitude and reflection coefficient changes reported (Figure 2d), though, indicates 
that we have obtained fairly accurate locations of reflection interfaces.  

Figure 2d also shows the superposition of ΔA for S/N = 5 and 2 over the previous cross-plot. We observe that data are more 
scattered than for the noise-free example for both scenarios. Figure 2e shows the cross-plot of the RMS maps of ΔIp from the 
petro-elastic model and ΔSw as a function of noise levels. As in the amplitude case, we observe a similar linear trend as well as 
scatter associated with reservoir heterogeneity. Also note that the inversion procedure provides an accurate ΔΙp estimate as 
they are consistent with the PEM results. Examining the S/N = 5 inversion results (Figure 2e) we observe that the data are 
significantly more scattered than both the reference values and the noise-free estimates. Similar trends are observed for other 
levels of noise, as illustrated by the S/N = 2 example in the same Figure 2e.  

The cross-plots in Figures 2d-e indicate that changes in amplitudes and impedances are affected by seismic data noise. While 
the scatter is proportional to the seismic noise levels in both domains because these cross-plots are scale dependent, it remains 
unclear which domain is more sensitive to the noise and therefore contains greater uncertainty. However, the correlation 
between data scatter and S/N levels is useful for quantifying the impact of seismic noise in both domains. Thus, further 
analyses of these data distributions are necessary before obtaining a reliable quantitative cross-domain comparison procedure.  

HISTOGRAM SIMILARITY “HS” ANALYSES 
To address this issue we present a method based on the histograms of amplitude and impedance changes, which define a 
common domain for quantifying attribute differences. Histograms are commonly used to examine different features of images 
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by partitioning the underlying values into a fixed number of bins, usually of predefined size (Rubner et al. 2000). Thus, they 
are a powerful way to represent an entire data set and provide valuable information for quality control. We exploit these 
characteristics by introducing the histogram similarity (HS) measure, which compares two histograms of a given property to 
provide a single number (i.e., a HS value) indicating the (dis)similarity of two histograms within a normalized [0, 1] range. HS 
values for dissimilar distributions and low S/N (<<1) levels will tend to zero. Conversely, for cases of similar distributions 
where S/N >> 1, HS values tend toward 1. For intermediate cases, which are the scenarios of interest here, the histogram 
similarity measure conceptually establishes a normalized domain in which to compare amplitude and impedance distribution 
behaviour. We compute HS values according to 

 2 ∑ .∑ ∑ ,  (1) 

 
where  and  are the histograms to be compared, i is the bin index and  indicates the number of bins. 

Figure 3a presents a superimposition of the histograms of the ΔA maps. Note the similarity between the ΔRC and 
noise-free ΔA histograms. Also, the comparison between the histograms of ΔA maps for noise-free and S/N 10 and 5 indicates 
that the distributions are broadening as noise increases. The additive noise increases the scatter observed in the RMS maps 
(Figures 2a-b) and therefore explains the broadening in the distributions presented in Figures 3a -b. It is not surprising that we 
observe the same pattern in the impedance changes (Figures 3b). Overall, these histograms contain information that can 
potentially be used to quantify the effect of S/N variations in ΔA and ΔIp. 

Figure 4 presents calculated HS values for both the amplitude and impedance domains and as a function of S/N 
levels. We note that the HS values for the amplitudes are higher than those for the impedances along the entire S/N range. This 
indicates that the ΔA values are more consistent with the ΔRC values than the ΔIp values are to true impedance values. This 
observation suggests that amplitudes are less sensitive than impedances to noise and, therefore, may be more reliable for 
quantifying ΔSw. This example also shows that HS values are able to quantify the effects of S/N levels in both amplitude and 
impedance domains. This supports our hypotheses that seismic amplitudes are more reliable than impedances for quantifying 
ΔSw, especially for low S/N scenarios. However, we are still missing the link between the effects of seismic data noise and 
estimates of ΔSw from 4D amplitude and impedance, which we discuss next.  

UNCERTAINTIES IN WATER SATURATION ESTIMATES 
To estimate water saturation we use a regression (nonlinear in general, linear in this specific example) to represent the changes 
in reflection coefficients versus ΔSw (Figure 2d). This relationship represents the reflection coefficient response to the porous 
media hardening due to the increase in water saturation. We perform a linear regression to this data, which provides us with a 
relationship between water saturation and reflection coefficients.  

Figure 5 presents the RMS error versus S/N levels for the changes in amplitude and impedance volumes. Note that apart from 
the extremely noisy S/N = 1 scenario the errors in ΔSw estimates are consistently lower in the amplitude domain than in the 
impedance domain. For the S/N=2 scenario, ΔSw estimates from amplitude have errors of approximately 18% while for 
impedances these errors increase to approximately 30%. This trend persists for the entire range of noise levels considered and 
for high S/N values the relative difference decreases suggesting asymptotic behaviour. 

We have shown that the RMS errors in ΔSw estimated using seismic amplitude information are smaller than those errors 
derived from seismic impedance. This suggests that in the presence of realistic 4D seismic noise levels, estimating ΔSw from 
seismic amplitudes can be more accurate and robust than estimating ΔSw from seismic inversion impedance values.  

DISCUSSION 

We confirm our hypothesis that for a realistic range of S/N levels in 4D seismic data, the amplitude domain is generally a more 
accurate and robust choice than the impedance domain for quantifying fluid saturation changes. The histogram similarity 
method (HS values) indicate that the histograms of ΔA maps are more similar to the true ∆  than inverted ΔIp are to the true 
P-impedance changes derived from the petro-elastic model. Moreover, RMS saturation errors in ΔSw derived from ΔA are 
smaller than ΔSw estimates obtained from ΔIp for the entire S/N ratio investigated. We discuss below the implications of these 
experimental findings to the choice of domains for integration of seismic and reservoir engineering data and practical 
implications for quantifying fluid saturation changes using 4D seismic data. 

DOMAINS FOR INTEGRATION  

AMPLITUDES AND IMPEDANCES 
To quantify fluid saturation changes using 4D seismic data it is crucial to understand how seismic amplitudes and impedances 
respond to fluid-flow changes. Our results suggest that amplitudes are more accurate and robust than impedances and therefore 
time-lapse data in the amplitude domain should be used to update reservoir fluid-flow model properties.  

In the UNISIM-H model ∆  are caused by water replacing hydrocarbons due to injection. An increase in water saturation leads 
to an increase in the acoustic impedance within the reservoir and therefore alters the energy of the seismic data spectrum which 
thereby affects impedance estimates. This increase in spectral energy dictates whether relative impedance estimates are reliable 
or not as the coloured inversion operator is based on the seismic data spectrum.  
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This band-limited approach enables us to analyse the uncertainties associated with S/N levels in the seismic bandwidth, 
avoiding any potential issues associated with low-frequency models required by seismic inversion methods to estimate 
absolute impedances. Seismic inversion methods often apply rock physics and/or low frequency model constraints in order to 
improve vertical resolution by adding the missing low frequencies in the seismic data (Russell and Hampson 1991; Kemper 
2010; Kemper and Gunning 2014). However, such low-frequency constraints should be used with care as they might suppress 
or distort valuable seismic signal.  

WATER SATURATION 
Estimates of RMS errors in ΔSw provide a cross-discipline domain allowing a more efficient communication between 
geophysicists, geologists and reservoir engineers to evaluate the effects of seismic noise in the amplitude, impedance and fluid 
saturation domains. The saturation domain is the natural choice of domain for reservoir engineers to work in as there is no 
requirement for data domain transformations and therefore it is possible to directly compare seismic derived ∆  estimates 
with those provided by fluid-flow simulation models. However, while seismic amplitudes are available and impedances depend 
on seismic inversion methods, it is challenging to obtain reliable estimates of water saturation from seismic data (Lumley et al. 
2003). As showed above, this relationship between seismic attribute and water saturation requires and additional inversion 
procedure that may also suffer from instability, inaccuracies and non-uniqueness. 

It is also important to realize that there is an accumulation of different sources of uncertainties in the impedance domain, 
including: (1) seismic noise, (2) source wavelet and impedance inversion errors; and (3) the regression approximation for 
calculating ΔSw(∆A,∆Ip). A proper evaluation of these sources of errors needs to be carried out in order to estimate reliable 
ΔSw from 4D seismic, otherwise there is a risk that the associated uncertainties will be underestimated.  

PRACTICAL IMPLICATIONS  
The main message of this study is that uncertainties associated with seismic noise need to be considered when deciding 
whether amplitude, impedances or water saturation domains should be used to update reservoir fluid-flow model properties. 
Through this 3D example presented we have demonstrated that overlooking noise in seismic data can mislead 4D attribute 
interpretation and potentially lead to an incorrect update of reservoir properties in fluid flow models.  In practice, most 
applications of 4D seismic data to update fluid-flow models are manual and 4D seismic interpretation is used as a guide for 
adjustments of simulation parameters such as fault transmissibility and permeability multipliers (Dong & Oliver 2008; Davolio 
et al. 2013; Stephen & Kazemi 2014; Avansi & Schiozer 2015). By honouring 4D seismic data during the update of these 
models, the range of simulation-model uncertainty can be reduced substantially. However, this manual process may be 
compromised by the artefacts in the maps associated with seismic noise uncertainties (Figures 2d-e).  

Our results have a direct impact on procedures to update fluid-flow models using 4D seismic attributes. Inverted acoustic 
impedances resulting from seismic inversions are usually applied to guide reservoir property updates and the errors that might 
exist within the seismic data are often neglected. We have demonstrated that these sources of errors should be accounted for as 
they may impact model predictions and geological consistency. We have shown that absolute impedance estimates can be 
biased by low-frequency trends and therefore applying this approach in areas where there is a limited knowledge of the lateral 
heterogeneity can lead to significant errors. 

The methods introduced in this study are potential alternatives to properly evaluate whether amplitudes, impedances or water 
saturation domains should be used to apply 4D seismic data to update reservoir properties. The histogram similarity method is 
a simple approach that quantifies the differences in values between two images and therefore may be used in quantitative 
workflows to update fluid flow models. These uncertainties are often underestimated and it would be of great value to consider 
them not only in qualitative interpretation but also within workflows to generate reservoir properties updates.  

In general, there are many uncertain parameters to be considered in integrating seismic and reservoir engineering data (Oliver 
et al. 2008; Barkved 2012; Johnston 2013). We have explored seismic noise and concluded that seismic amplitudes are 
generally more reliable than seismic inversion impedances for quantifying changes in water saturation, in cases of moderate to 
high levels of seismic noise (S/N<10).  For cases of excellent quality seismic data (S/N>10), seismic impedance inversion 
methods can and have been important for assisting 3D/4D seismic interpretation. While the domain of integration should be 
defined in a case-by-case basis, it is important to develop an interdisciplinary understanding of the uncertainties associated 
with each discipline involved and de-risk reservoir management decisions. 

CONCLUSIONS 

We conducted a number of numerical experiments aimed at examining the response of seismic amplitudes, impedances and 
water saturation changes as a function of S/N seismic noise levels. This work demonstrates that in the presence of realistic 4D 
seismic noise, the amplitude domain is generally more accurate and robust than the impedance domain for quantifying changes 
in water saturation.  

The UNISIM-H 3D seismic example allowed us to compare the seismic noise impact on amplitude, impedance and water 
saturation changes in a realistic 3D reservoir model. Using our histogram similarity method we infer that seismic amplitudes 
are less sensitive to 4D seismic noise than seismic inversion impedances, and that seismic amplitudes result in more accurate 
and robust estimates of water saturation than impedances.  

This study highlights that the errors associated with 3D and 4D seismic noise need to be quantified and properly accounted for 
when selecting the optimal domain to use 4D seismic information to help constrain reservoir fluid-flow model property 
updates. Careful consideration regarding 4D seismic signal quality and noise levels can result in more accurate reservoir 
property estimates, and thereby improve the management of reservoir complexity and financial risk. 
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Figure 1. Water saturation distribution on UNISIM-H at the time of the baseline (upper left) and monitor (lower right) 
synthetic seismic surveys.  

          
                                                                                             (a) 
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                                          (d)  

                           (e) 
Figure 2. Maps extracted at the bottom of the reservoir. (a) true ΔSw from the flow simulator; (b) S/N = 10 4D 
amplitude changes; (c) S/N = 10 inverted impedance changes; Cross-plots of 4D (c) amplitude changes versus water 
saturation changes and (d) ΔΙp as a function of seismic noise levels. 
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Figure 3.—Comparison of the histograms of RMS maps of 4D Amplitude and Impedance changes as a function of noise. 
(a) 4D Amplitude changes and (b) 4D Impedance changes. 

 

 
Figure 4. Histogram Similarity (HS) versus signal-to-noise (S/N) ratio for 4D seismic amplitudes (blue trend) and 4D 
impedances (red trend) caused by reservoir water saturation changes. Note that the Histogram Similarity values are 
consistently better for 4D seismic Amplitudes over a wide range of realistic seismic noise levels. 
 

 

 
Figure 5. RMS Saturation Errors for changes of water saturation estimated from 4D seismic Amplitude changes (blue 
trend) and 4D seismic Impedance changes (red trend).  Note that the water saturation estimates are consistently more 
accurate using 4D seismic Amplitudes over a wide range of realistic seismic noise levels. 
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