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SUMMARY 
 
Airborne gravity tensor (or gravity gradient) surveying is one of the newest techniques for geophysical exploration. The rise in the 
acquisition of this data type is partially due to the fact that these data provide much more complete, extensive and higher resolution 
information of rock density distribution than conventional land gravity data. This has positioned Airborne Gravity Gradient (AGG) 
surveys among the geophysical services requested by mining companies, alongside aeromagnetic and radiometric surveys. The use of 
these data has been primarily to support geological mapping given the limited access to commercial software for quantitative depth 
interpretation. In particular, there has been a scarce development of AGG data inversion software, which has limited our 
understanding of the significance of these data for resolving three-dimensional subsurface targets. In this work we hypothesize that 
AGG data can provide  more detailed information of the multidirectional variations of subsurface density. To prove this hypothesis, 
we developed conjugate gradient AGG-data inversion software for three-dimensional targets. This software was applied to synthetic 
data generated by several test assemblages of three-dimensional bodies and used to perform a Singular Value Decomposition (SVD) 
sensitive analysis to explore the actual resolution power of the different tensor data components and whether they are indeed superior 
to the conventional vertical gravity. 
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INTRODUCTION 

 
Since the early 20th century, gravity exploration has been extensively used in mineral and hydrocarbon exploration (see e.g. 
Nabighian et al., 2005; Nabighian and Asten, 2002). Most gravity surveys have used gravity meters designed to differentially 
measure the vertical component of the gravity vector ݃௭. There have been alternative equipment to detect other field components. For 
instance, the first practical device to measure the horizontal component of the gravity field (the Torsion Balance) was designed in 
1886 by von Eötvös and was successfully applied to detect the Nash Dome Field back in 1924 (cf. Zhdanov et al., 2004). Despite this 
early success, economical application of Gravity Gradient (GG) fell out of favour and it was only after a recent two-decade 
development of several proprietary gradiometers (Dransfield, 2007; Dransfield and Lee, 2004; Jekeli, 1993; Murphy, 2004), which 
added the possibility of gravity surveys on aerial platforms, that GG mapping gained a renewed interest in exploration (Cevallos et 
al., 2013; Jekeli, 2004). 
 
The development of computational codes for the inversion of GG tensor data is an area that is receiving recent attention mainly by 
academic groups. Given the tensor characteristics of the GG data, progress in this direction has to account for full three-dimensional 
models which bring additional challenges typical on three dimensional optimization problems and, therefore, any development has to 
adhere closely to the massive processing strategies that these large-scale problems adopt (Moorkamp et al., 2011; Zhdanov et al., 
2004). Despite these efforts, little attention has been given to the analysis of the actual resolution power of the different GG 
component data in three-dimensional scenarios. 
 
In this work we suggest that the combined inversion of the various components of the GG data provides better resolution than 
conventional vertical gravity data and propose the development of an efficient conjugate gradient algorithm for the three dimensional 
inversion of massive GG data sets. We then apply the algorithm to two test experiments, which provide the sensitivity matrix 
required for a standard SVD resolution analysis of the problem. 
 
The gravity gradient of a rectangular prism 
 
We have a differential element located at the Cartesian coordinates ࢘Ԣ ൌ ሺݔԢ, ,Ԣݕ ࢘ Ԣሻ, and an observation pointݖ ൌ ሺݔ, ,ݕ  .ሻ (Figure 1)ݖ
Following the integral form of Newton’s Law, the potential field  ܷሺ࢘ ሻ  produced by the mass contained within a volume ܸᇱis given 
by ܷሺ࢘ሻ ൌ െߛ ම ࢘|Ԣሻ࢘ሺߩ െ |Ԣ࢘ Ԣ, (1)ݒ݀

where ߛ is the gravitational constant of 6.674x10-11 Nm2/kg2, |࢘ െ |࢘ ൌ ሺሺݔ െ Ԣሻଶݔ ൅ ሺݕ െ Ԣሻଶݕ ൅ ሺݖ െ Ԣሻଶሻଵݖ ଶ⁄  and  ߩሺ࢘Ԣሻ is the 
mass density of the causative body enclosed. In geophysics we normally find analytical expressions developed for the vertical 
component ݃௭ሺ࢘ሻ. 
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In the particular case of a rectangular prismatic body of finite volume and uniform density ߩሺ࢘Ԣሻ ൌ  we may find the ,(Figure 1)  ߩ
following expression for ݃௭ሺ࢘ሻ[After Banerjee and Gupta, 1977]: ݃௭ሺ࢘ሻ ൌ ߩߛ ቂሺݔ െ ᇱሻݔ lnሺݕ െ ᇱݕ ൅ ሻݎ ൅ ሺݕ െ ݔᇱሻ݈݊ሺݕ െ ᇱݔ ൅ ሻݎ െ ሺݖ െ ଵି݊ܽݐᇱሻݖ ቀሺ௫ି௫ᇲሻሺ௬ି௬ᇲሻሺ௭ି௭ᇲሻ௥ ቁቃ ሃ௫భᇲ௫మᇲ ሃ௬భᇲ௬మᇲ ሃ௬భᇲ௬మᇲ , (2)

where ݎ ൌ ࢘| െ  .|Ԣ࢘
 

The mathematical representation of Gravity Gradient is performed using the Gravity Tensor (TG) which is the direct result of 
applying the second derivative of gravity potential ܷሺ࢘ሻ. We represent the components of TG  as follows  

ఈܶఉሺ࢘ሻ ൌ െ߲ଶܷሺ࢘ሻ߲ߚ߲ߙ , (3)

where ߙ, ߚ ൌ ,ݔ ,ݕ  Set a medium with homogeneous density; using equations (1) and (3), we obtain the general expression of the .ݖ
TG components 

ఈܶఉሺ࢘ሻ ൌ െߛ ම Ԣሻ࢘ሺߩ ࢘|1 െ Ԣ|ଷ࢘ ࢘ఈఉሺܭ െ Ԣሻ௏࢘ Ԣ, (4)ݒ݀

where ߩሺ࢘Ԣሻ is density of the body and ܭఈఉ is the Kernel of the function which has the form 

ఈఉܭ ൌ ቐଷሺఈିఈᇱሻሺఉିఉᇱሻ|࢘ି࢘ᇱ|మ ߙ ് ᇱ|మ࢘ି࢘|ଷሺఈିఈᇱሻమߚ െ 1 ߙ ൌ (5) ,ߚ

where ߙ, ߚ ൌ ,ݔ  The GG can be represented as a second order tensor (a square matrix) with nine components. Since it results from  .ݕ
a scalar potential potential field, their cross-derivative components are the same, and the tensor reduces to only six independent 
components ௫ܶ௫, ௬ܶ௬, ௭ܶ௭, ௫ܶ௬ ൌ ௬ܶ௫, ௫ܶ௭ ൌ ௭ܶ௫, ௬ܶ௭ ൌ ௭ܶ௬. 
 
Using the equations (4) and (5) with a homogeneous density and following the procedure of Fosberg (1984), we obtain the general 
expression of the components of the gravity tensor 
 

ఈܶఉ ൌ ߩߛ ێێۏ
ଵି݊ܽݐۍێ ቀሺ௭ି௭ᇱሻሺ௬ି௬ᇱሻ௥ሺ௫ି௫ᇱሻ ቁ െ݈݊൫ݎ ൅ ሺݖ െ Ԣሻ൯ݖ െ݈݊൫ݎ ൅ ሺݕ െ ݎԢሻ൯െ݈݊൫ݕ ൅ ሺݖ െ Ԣሻ൯ݖ ଵି݊ܽݐ ቀሺ௫ି௫ᇱሻሺ௭ି௭ᇱሻ௥ሺ௬ି௬ᇱሻ ቁ െ݈݊൫ݎ ൅ ሺݔ െ ݎԢሻ൯െ݈݊൫ݔ ൅ ሺݕ െ Ԣሻ൯ݕ െ݈݊൫ݎ ൅ ሺݔ െ Ԣሻ൯ݔ ଵି݊ܽݐ ቀሺ௫ି௫ᇱሻሺ௬ି௬ᇱሻ௥ሺ௭ି௭ᇱሻ ቁۑۑے

ېۑ ሃ௫భᇲ௫మᇲ ሃ௬భᇲ௬మᇲ ሃ௬భᇲ௬మᇲ . (6)

 
Convolution-based 3D inversion of gravity gradient data 
 
According to the superposition principle of gravity potential, we generalized the effect of a set of rectangular prisms as the 
summation of individual effects of each prism in a homogeneous medium. We express this generalization similar to the form of the 
equation (4); this expression indicates that, at a fixed z position and constant cell width, the derivative is the convolution of a 
characteristic 2D filter which does not need to be evaluated individually. This allows the efficient computation of sensitivities for 
thousands of observed data and horizontal cells. In fact, due to its symmetry, we only need to compute a single quadrant of the filter 
to cover the complete two-dimensional domain for each layer of cells. 
 

3D INVERSION 
 

We have the objective function to solve the inverse problem with the standard form 
 ߶ ൌ ԡ࢙࢈࢕ࢊ െ ԡ஼೏೏షభଶ࢓ࡲ ൅ ԡ࢓ െ ૙ԡ஼బబషభଶ࢓ ൅ ԡଶ, (8)࢓ࡰ௣ԡߙ

where ܥௗௗis the covariance matrix of observed data, ܥ଴଴is the covariance matrix, ߙ௣is the penalty term.  ࢓ࡰ  is a regularization 
element that searches for the gradual lateral variation of the density inside the model, ࢓ࡲ is the model response, ࢓ െ  ૙  is the࢓
difference between density model ࢓ and regularization model ࢓૙. In our case, we follow a least squares formulation to find a model 
that minimizes the objective function based on a quadratic norm and obtain a lineal system of equations that can be solved through 
different numerical strategies.  
 
We used the iterative Conjugate Gradient (CG) method to solve the resulting linear system of equations where we take full advantage 
of the convolution property of the gravity gradient for an ensemble of equally-sized cells. 
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SVD sensitive analisys 
 

In general, the conventional analysis of resolution can barely distinguish the contribution of each element of the gravity tensor in the 
spatial domain. Instead, we used the Singular Value Decomposition (SVD) to characterize the whole sensitivity matrix before any 
regularization associated to the least square formulation, which enables a complete analysis of the pure data contribution. In this 
theory, a general rectangular mxn matrix  A can be factorized in two orthogonal vector basis U and V in the form ࡭ ൌ (9) ࢀࢂࡰࢁ

where U is a mxm rectangular matrix ݉݉ݔ, D is a partially diagonal matrix  and ࢂ is a nxn rectangular matrix. 
 

RESOLUTION TEST 
 

Text Example I: Isolated L-test model source 
 
The first model to analyze is an L-shaped source model formed with a group of prisms of equal size (1mx1mx2m) distributed along 
fifteen depth layers. For this model, we generated synthetic data using a density of 1 ݃ ܿ݉ଷ⁄  for the cells localized inside the selected 
shape in the first three layers of prisms. For our particular choice of depths’ it was expected that  the resolution is best for the nearest 
model cells. We performed the inversion of the synthetic data using a damping parameter ߙ௣ ൌ 10 and an a priori model standard 
deviation of ߪ଴଴ ൌ 0.1 ݎ݃ ܿ݉ଷ⁄ . This experiment  resulted in the 3D model in Figure (2). The SVD for sensitive matrix of L-test 
model is shown in Figure 3a) and we can note the characteristic behaviour of the singular values for ݃௭ and the individual elements 
of the gravity tensor. Figure 3b) shows maps of the different components of the GG and ݃௭ fields for the singular vector associated to 
the largest singular value for the L-test model. 
 
Text example II: Checker-board test model source 
 
In a second experiment, we proposed a 3D checker board test model composed of 27 ൈ 27 ൈ 15 rectangular prisms alternating their 
density from 1 ݃ ܿ⁄ ݉ଷ to െ1 ݃ ܿ⁄ ݉ଷ every 3x3x3 cells. For our inversion we selected a damping parameter ߙ ൌ 10 and an a priori 
model standard deviation of ߪ଴଴ ൌ 0.1 ݃ ܿ݉ଷ⁄ . For this experiment, we may note (Figure 4) that the resulting model was limitedly 
resolved for both the ݃௭ and the various components of the gravity tensor. The SVD for the ݃௭ and the various elements of the 
gravity tensor are shown in Figure 5a). Figure 5b) shows maps of the different components of the GG and ݃௭ fields for the singular 
vector associated to the largest singular value for the L-test model. 
 

DISCUSSIONS AND CONCLUSIONS 
 

We can see that the application of the CG method to inversion of the gravity gradient and the ݃௭ data, has good lateral resolution in 
the two examples; we may note, however that both data types have limited depth resolution (cf. Figures 2 and 4). In both cases only 
the upper layer is defined in any great detail. The rapid decay at depth can also be noticed in the SVD factorization, where the 
singular values show several step-like reductions amounting for half an order of magnitude decay for each step (Figures 3 and 5a). 
Results also show a slightly superior sensitivity to North-South property variations for all the tensor fields, which is even larger to 
that expected for vertical components. We thus conclude that gravity gradient data can provide more detailed information of the 
lateral variations of subsurface density which, however, decays rapidly at depth. 
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Figure 1. Illustration of the basic rectangular prism used to model gravity tensor data.  Note that the lateral extensions of the 
prism are assumed parallel to the reference system. 
 

 
Figure 2.  Test model obtained by the joint inversion of TG and ݃௭ data generated by a L- shape body placed within in the top 
three layers. Density color scale is shown from -1 to 1 ݃ ܿ⁄ ݉ଷ. 
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Figure 3. a) Singular values obtained for the sensitivity matrix of a L-test model. The values are ordered from the largest to 
the smallest and data sensitivity includes both ݃௭ and GG data. Note that the decay of the values is given by continuous steps 
where the values decay by half an order of magnitude at every 729 values (amount of horizontal cells per model layer). b) 
Maps of the different components of the GG and ݃௭ fields for the singular vector associated to the largest singular value for 
the L-test model. It is noticeable that the data are mainly sensitive to North-South variations for all the fields rather than 
vertical fields. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Optimal model obtained by the joint inversion of TG and ݃௭ data generated by a checker-board test model with 
densityvalues ranging -1 to 1 ݃ ܿ⁄ ݉ଷ. Depth layers are 1 m thick. 
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Figure 5. a) Singular values obtained for the sensitivity matrix of a 27x27x15 cell model. The values are ordered from the 
largest to the smallest and data sensitivity includes both ݃௭and GG data. Note that the decay of the values is given by 
continuous steps where the values decay by half an order of magnitude at every 729 values (amount of horizontal cells per 
model layer). b) Maps of the different components of the GG and ݃௭ fields for the singular vector associated to the largest 
singular value for the test model of 27x27x15 cells. It is noticeable that the data are mainly sensitive to North-South variations 
for all the fields rather than vertical fields. 
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