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SUMMARY 
 

Big Data techniques have the potential to be paradigm-changing for applied geoscience if they are used widely.  A significant 

number of such techniques, under the umbrella of Earth informatics, involve Machine Learning applied to high dimensional data to 

create new forms of value.   This contribution presents two case studies of successful Earth informatics computation and the 

communication of the value of results, which provide insight into the uptake of ‘Big Data’ in geosciences. 

 

Machine Learning techniques split naturally into either supervised or unsupervised approaches.  Supervised algorithms, such as 

Random ForestsTM (RF), support vector machines or neural networks, share the concept of training a classifier using an initial 

(training) dataset.  They are generally applied to predictive tasks, such as our first case study, predicting lithology from remote 

sensing and airborne geophysical data.  Unsupervised algorithms, such as Self-Organising Maps (SOM), allow patterns inherent in 

the data to emerge without the use of a training dataset.  They are generally applied to tasks which seek to explore patterns in data, 

such as our second case study, which identifies new potentially prospective river catchments.  We find that calculating and presenting 

explicitly the newly extracted value, of the result obtained through computation, is an essential component of the post-compute 

evaluation. 

 

As strong advocates for the use of a range of Big Data techniques in applied geosciences, we conclude that the benefits to be gained 

from the way that we ‘compute’ can be lost if we do not also take considerable care with the ways that we ‘communicate’. 
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INTRODUCTION 
 

Big Data Approaches and Uptake in Applied Geoscience 

Big Data approaches have gained wide popularity in many areas of commerce.  The name implies large volumes of data, but the key 

idea relates to computational analyses “that we can do with large amounts of data, that we can’t do with small amounts, to extract 

new insights or create new forms of value” (Mayer-Schönberger and Cukier, 2013).  These approaches are based on statistical 

associations and complement traditional geophysics approaches which are based on deterministic physical relationships.  Where 

available data exist in high dimensions (effectively 4 or more layers), there is great potential to make predictions and to explore for 

useful patterns between these dimensions using Big Data techniques. 

Examples of successful Machine Learning studies in applied geoscience using high-dimensional data inputs include those applied to 

exploration target generation (Cracknell et al., 2014, Merdith et al., 2015), those applied to multi-disciplinary studies (Cracknell et 

al., 2015) and those applied to data-rich applications such as drill-hole data (Reading and Gallagher, 2013, Hill et al., 2015).  In spite 

of these successful demonstration studies, and numerous examples from other industries, the uptake of Big Data techniques as routine 

procedures for mineral resources exploration has been limited.  

 

METHODS AND DATA 

 
Prediction using Random Forests (Case Study 1) 

Supervised classification was implemented using the Orange software environment (Demsar et al., 2013) including the graphical 

programming interface to readily facilitate data input and workflow.  RF (Breiman, 2001) is an ensemble supervised classifier that 

constructs a classification algorithm through multiple randomised decision tree classifiers.  Randomness is introduced by randomly 

subsetting a predefined number of inputs (often   number of variables) to split at each node of a tree and by bagging.  Bagging 

generates training samples for each tree by sampling with replacement a number of samples equal to the number of instances in the 

training data.  The remainder, so called out-of-bag samples, are used for evaluation.  The Gini Index is used by RF to determine a 

best-split threshold at each tree node.  The Gini index is defined as      ( )   ∑   (    ) 
 
    where    is the probability of class 

c at node j,      
  

 
,     is the number of samples belonging to c, and n is the total number of samples within j.  For each candidate 

split, the threshold t that results in the maximum reduction in class heterogeneity is selected (Breiman et al., 1984).  The class 

membership probability,   , that a given sample, i, is one of c in the training data is estimated by dividing the total number of votes 

for each class by the number of trees, T (Hastie et al., 2009),    
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Case Study 1 uses data from an orogenic gold exploration area near St Ives Gold Mine, Eastern Goldfields, WA (Figure 1A). 16 

layers of data were used as initial inputs including gravity, magnetic, DTM, Landsat 7 and airborne gamma ray spectrometry data.  

After the variable ranking process, the potential field, DTM and spectrometry data proved most relevant.  RF was trained using 1.4% 

of available data, 100 samples per lithology class.  The trained RF classifier was applied to all samples within the study area and the 

compute time was 10-15 minutes on a well specified current-model notebook or desktop PC. 

 

Patten detection using a Self-Organising Map (Case Study 2) 

Unsupervised classification using a Self-Organising Map (SOM) was implemented using the R statistical programming language (R 

Core Team, 2015) package kohonen (Wehrens and Buydens, 2007).  The Davies-Bouldin Index (Davies and Bouldin, 1979) which 

provides an estimate of cluster similarity and dispersion, was used to identify an optimal number of merged SOM nodes.  Input 

variables that contributed significantly high or low SOM code-vector values (relative differences) were identified using the ratio 

between   (   ) and 
 

   
∑   (   )   , where   (   )is the mean cluster   code-vectors for input variable   and where   (   ) is the 

mean cluster j code-vectors for input variable  .  This ratio provides an indication of the relative difference in   for cluster   
compared to that of all other cluster’s mean code-vector value for   (Siponen et al., 2001). 

Case Study 2 (Figure 2A) uses data from the National Geochemical Survey of Australia (de Caritat and Cooper, 2011).  Multiple 

input layers of Mobile Metal Ions (MMITM) assay data derived from top of outlet sediments (coarse fraction) were used.  Analysis 

was carried out on these data for 44 elements (including Au); bulk sediment properties, pH, electrical conductivity and % fractions of 

clay, silt and sand; 30 geostatistical summaries of geophysics data, and two measures of catchment geometry, a total of 81 layers.  

The SOM was initiated with 200 randomly positioned seed nodes and run for 10,000 iterations in a compute time of 15-20 minutes. 

 

RESULTS 

 
Case Study 1, Lithology Prediction – Scientific Outcomes 

The Machine Learning prediction has resulted in a redefinition of some of the lithology boundaries within the study area (Figure 1).  

Notable changes include the likely boundary between the granite and the dolerite (C1) being located further to the west; the 

volcanogenic sediments (C2) apparently spanning a wider area, but terminating at a more southerly point; significant refinements to 

shape of the komatiite units (C3, C4), and the likely extension of basalt unit (C5) over an area previously mapped as dolerite.  These 

refinements may be in themselves significant to explorers, or they may enable a better result in inversions constrained by, for 

example, potential field data (Reading et al., 2015).  An important step in the evaluation of these refinements is prediction evaluation 

(Cracknell and Reading, 2014).  For this field area, Kuhn et al., (2016) present an investigation that explores the use of information 

entropy, H, as a proxy for inaccuracy in the prediction result. 

 

 
 

Figure 1: Refinement of a geological map in the area of St Ives Gold Mine, Eastern Goldfields, WA, through Machine 

Learning prediction using RF (adapted from Kuhn et al, 2015; Kuhn et al., in preparation).  A – Original map with locations 

of training samples.  B – Refined map showing the result of the RF classification.  This is effectively the ‘new’ map for 

subsequent use.  C – ‘Communication’ figure that shows the locations where the Machine Learning has improved the value of 

the original map through the relocation of lithology contacts. 
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Figure 2: Identification of river catchments potentially prospective for gold through Machine Learning pattern detection 

using SOM applied to geochemical data in northern central Australia.  A – Concentration of gold in river catchments. B – 

River catchments identified, across many input variables, using SOM as showing a propensity for gold occurrence.  C – River 

catchments shown as concentration of gold overlain with catchments identified in B.  This is effectively the new map for 

subsequent use.  D – ‘Communication’ figure that highlights the catchments identified using SOM that would not have been 

identified as prospective based solely on the geochemical concentration data.  E – Position of identified clusters on the SOM 

2D map, warm colours indicate prospective clusters.  F – Code-vector ratios, used to define clusters indicating high 

propensity for gold occurrence. 
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Case Study 2 – Pattern Identification - Scientific Outcomes 

The Machine Learning identified patterns highlight numerous catchments that share groups of features that together indicate elevated 

prospectivity for Au in contributing catchments (Figure 2B).  The relationship of different clusters on the 2D unsupervised SOM that 

supports this pattern identification is shown (Figure 2E) together with the corresponding code-vector ratios (Figure 2F).  A more 

advanced presentation of input data uses the centred log transform values of the input geochemical data (Cracknell and de Caritat, 

2016).  We use the geochemical concentration data in this illustration to focus directly on the value added through Machine Learning. 

Identified catchments are spread through the study area and show considerable variability as to whether they correlate with 

catchments identifiable through their elevated Au concentration alone (Figure 2C).  Thus, we can see the value in using both the 

‘obvious’ indications of prospectivity, and the indications that come through using multiple input layers and a computational 

approach.  Further use of the outputs of this analysis requires bringing together the geochemical data, the insights from the SOM 

analysis and ancillary information such as river catchment geometry.  Collaborating experts can then make best use of all information 

available towards the common mineral prospecting goal. 

 

   

DISCUSSION 

 

Communication of Machine Learning Outputs 

Machine Learning outputs (e.g. Figure 1B) provide results in a form that often looks very similar to the input information (e.g. Figure 

1A).  While a domain expert (e.g. exploration geologist) would be well advised to proceed with the updated product (e.g. lithology 

map, Figure 1B) that contains refinements due to the Machine Learning process, the extent to which the improvements come from 

this computation is not readily apparent.  Routine outputs from Machine Learning do indeed contain “new insights and new forms of 

value” but the newly added value is often not well demonstrated.  We suggest that this has contributed to the limited uptake of Big 

Data techniques in applied geoscience.   

One relatively simple additional output that can be presented shows the output information obtained from the RF exercise on high 

dimensional data set against the lithology map input information, e.g. Figure 1C.  In this example, the Machine Learning output is 

shown as coloured areas, with the contacts as inferred prior to the Machine Learning shown as black lines.  This approach is 

successful for cases of map refinement and may be enhanced with the addition of annotations as in our example.  Text annotations 

become less appropriate for large and complex output explanations but could be replaced with links or augmented reality information 

in this case. 

We illustrate an alternate approach in Figures 2C and 2D making use of transparency / opacity masks to set the new knowledge 

obtained through the Self-Organising Map exercise on high dimensional data in the context of what was previously understood from 

the most obvious single input data layer.  While all information is contained in Figure 2C, Figure 2D shows explicitly the value 

added from the Machine Learning.  In this case, the value added information is significant.  Some catchments with low element 

concentration in sediments show considerably higher promise from the high dimensional study which brings much more information 

to the inference process. 

 

Promoting the Uptake of Machine Learning in Applied Geosciences 
In the thorough summary of Machine Learning applied to geological mapping by Cracknell et al., 2014, the three parts of the process 

1) Data preparation; 2) Machine Learning; 3) Prediction evaluation, were outlined.  In this contribution, we have focussed on adding 

‘communication’ figures which show the value added by the Machine Learning.  One further, relatively easy, step remains 

outstanding for Machine Learning to become a natural part of the exploration tool box, and that relates to part 1, that of data 

preparation.  All too often, data are stored in diverse formats and with limited metadata.  Increasing use of GIS software and data 

integration training is improving this situation, but data should be archived in interoperable formats, such that reprocessing is 

achievable, as routine.  In order to promote the uptake of Machine Learning, we therefore make the following recommendations: 

 Data should be collected and stored in archives format standards such that each record may be used in automated Machine 

Learning or other Big Data exercises with minimal reformatting.  This reduces the lead-in time for the Machine Learning work 

and hence lowers the barrier to uptake. 

 The outputs of the Machine Learning, and subsequent prediction evaluation, should be displayed in a way that makes clear the 

improvement (or otherwise) due to the Machine Learning procedures.  It is vital that the insights and/or added value gained 

through the Machine Learning are clear to decision makers, other than computation experts, reviewing the improved product.   

 

 

CONCLUSIONS 
 

The first case study shows that the Machine Learning algorithm, Random Forests, may be used to predict lithology from geophysical 

and remote sensing input datasets.  The approach improved a lithology map for a region including significant undercover areas.  The 

second case study shows that a Self-Organising Map may be used to identify river catchments of potential new interest to 

prospectors. 

 

Both case studies result in a geological map or spatial representation that contains added value by virtue of the Big Data process that 

has been undertaken.  This added value translates directly to new insights and the analyst who has carried out the Machine Learning 

study has a sense of the added benefit.  Common to both case studies, these improvements, i.e. the parts of the geographic map where 

the Machine Learning process has added new knowledge, are not readily evident to the end-user in standard map outputs. 

 

While Machine Learning approaches remain non-routine in applied geoscience, we must take care to present a second set of results 

that make explicit the benefits to be gained from the ‘compute’.  These benefits can be lost on the very end-users that stand to gain 

the most, if we do not also put considerable thought and insight into the ways that we ‘communicate’. 
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