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METHOD AND RESULTS 

 
1. Simultaneous inversion to date 

A) Deterministic method 

We start in this case with the Fatti (1994) equation (other 

approximations to the Zoeppritz equation are possible also): 

 

Rpp(θ) = aRAI + bRSI + cRρ    [1] 

Where: 

 RAI = ∆Vp/(2Vp) + ∆ρ/(2ρ)       

 RSI = ∆Vs/(2Vs) + ∆ρ/(2ρ)      

 Rρ = ∆ρ/(2ρ)      

 a = 1 + tan2θ 

 b = -8 K sin2θ 

 c = 4 K sin2θ - tan2θ 

 [ K = (Vsavg/Vpavg)
2 ] 

 

We can turn reflectivity Rpp(θ) in [1] into synthetic seismic 

Spp(θ) by convolving with wavelet W(θ): 

 

Spp(θ) = aW(θ)RAI + b W(θ)RSI + c W(θ)Rρ  [2] 

 

Subsequently we can use the small contrast approximation RAI 

= (RAI2 - RAI1) / (RAI2 + RAI1) ≈ ½ ∆AI / AI = ½ ∆Ln(AI) to 

rewrite [2] as 

 

Spp(θ) = a/2 W(θ) ∆Ln(AI) + b/2 W(θ) ∆Ln(SI) + c/2 W(θ) 

∆Ln(ρ)      [3] 

 

Formula [3] is the essence of all continuous simultaneous 

inversion methodologies: plug in a starting model of AI, SI 

and ρ, take the natural logarithm, difference, for each partial 

angle stack convolve with the corresponding wavelet W(θ), 

scale (using a/2, b/2 and c/2) and for each partial stack 

incidence angle θ compare the synthetic seismic Spp(θ) so 

obtained with the real seismic Sreal(θ) which we assume to be 

true amplitude (with calibrated wavelets available from well 

ties). Use some optimization apparatus (e.g. the conjugate 

gradient method, or least squares optimization) to iteratively 

change AI, SI and ρ until the difference between Spp(θ) and 

Sreal(θ) is minimized for all partial stack incidence angles θ, 

typically in some least squares sense (solving for AI, SI and ρ 

directly is possible also; not discussed here).   

 

Because of the convolution by W(θ), [3] cannot be used 

sample-by-sample.  Instead it is typically used trace-by-trace 

(this can be extended to multi-trace; not discussed here).  

Therefore Ln(AI), Ln(SI) and Ln(ρ) can be seen as column 

vectors which we stack on top of one another to obtain Ln(Z).  

The difference operation ∆, applied to each of Ln(AI), Ln(SI) 

and Ln(ρ), can be expressed as an (almost diagonal) matrix D.  

And lastly the convolution can be expressed by a (banded) 

matrix W (typically a different W matrix per partial angle 

stack).  The product of W and D we can call system matrix X, 

into which the scaling parameters a, b and c (and the ½ factor) 

can be subsumed.  So [3] in block matrix form reduces to 

 

 S = X • Ln(Z)    [4] 

 

It is useful to sketch (Figure 1) the sizes of the various block-

vectors/block-matrices in the case where we invert for 3 

impedances (i.e. AI, SI and ρ) given 4 partial stacks at, say, 5o, 

15o, 25o and 35o incidence angle, over a gate of 100 samples: 

 

 

SUMMARY 
 

In this paper we will first review the industry-standard 

continuous simultaneous inversion methods and point out 

some shortcomings.  We will then introduce our new 

joint categorical/continuous simultaneous inversion 

technology, which reformulates the problem to address 

these issues. It casts the inversion as a Bayesian problem, 

which needs to be solved iteratively, as the inversion to 

categorical and continuous properties cannot be written 

down in closed form. We present some examples and 

conclude that the new inversion is able to overcome the 

shortcomings mentioned. 
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Figure 1: Matrix sizes (in red) for 4 partial angle stacks, 3 

impedances, and a time gate of 100 samples.  The black 

lines show that the blocks within matrix X are banded; in 

the top right and bottom left are many zeroes (especially if 

the wavelet is small and/or the gate is long), which speeds 

up calculation. 

 

Note-1: Each block of the system block matrix X contains an 

almost diagonal difference matrix D multiplied by a 

banded wavelet matrix W, making each block banded 

and thus quite sparse.  These blocks are not identical, 

as vertically the convolution matrix changes (different 

wavelets for different incidence angles θ), and 

horizontally the scaling factors change from a/2 to b/2 

to c/2 respectively. 

Note-2: The impedance traces are 1 longer than the synthetic 

seismic traces, as we need 2 impedances to calculate 

1 reflectivity! 

 

So the optimization typically consists of minimizing an 

objective function ||Sreal - X • Ln(Z)||2, by changing Ln(Z).  

This in itself is usually wildly unstable, so normally one adds 

a regularization term to ensure the impedances do not drift 

away too much from the initial impedances Zo.  The total 

objective function to be minimized is then something like 

||Sreal - X • Ln(Z)||2 + µ||Ln(Z) - Ln(Zo)||2, where µ, the so-

called model weight, should be as small as possible to ensure 

the inversion is driven mostly by the data (i.e. the seismic 

Sreal), and as little as possible by the initial model (Zo).  Note 

that the objective function is quadratic, which makes 

optimization relatively easy. 

 

It is well known that the methodology described in some detail 

above gives results that are not credible when compared to the 

impedances from wells.  A major reason for this is that the 

band-limited convolution destroys high and low frequency 

information, making the inverse problem very 

underdetermined, and the regularization term introduced 

above is too simplistic a cure for this.  In other words, in the 

deterministic inversion scheme introduced so far we need to 

incorporate more sophisticated regularization information for 

it to give useful results.  We'll come back to this in section 2. 

 

B) Statistical method 

Clearly simultaneous inversion can be seen as a statistical 

problem, given the noise component of the seismic signal.  

The most common way to proceed is to cast it as a Bayesian 

problem, in which the prior information, if well chosen, will 

provide sufficient regularization. Bayes' theorem in this case 

can be written as: 

 

π(Z|Sreal) ≈ L(Sreal|Z) p(Z)    [5] 

 

Where π is the posterior distribution, L the likelihood function 

and p the prior distribution. Again Z represents the 

impedances (say AI, SI & ρ in case of Fatti) 

 

It is customary (Buland and Omre, 2003) to represent the 

distributions as being (multi)normal; this is often very 

reasonable, and makes the mathematics a lot more tractable. 

 

The prior distribution can be obtained from a depth trend of, 

say, AI and cross-plots between AI vs. SI and AI vs. ρ (all 

derived from well data, and all with an assessment of 

uncertainty).  These trend fits can be expressed as a multi-

normal prior distribution of form 

 

p(Z) ≈ exp{-½(Z - Zo)T Cp
-1 (Z - Zo)} / |Cp|½  [6] 

 

Where Cp is the covariance matrix describing the variance of 

and the correlation between the impedances 

 

The likelihood function can be expressed as 

 

L(Sreal|Z) ≈ exp{-½(Sreal - F(Z))T Cd
-1 (Sreal - F(Z))} / |Cd|½

      [7] 

Where F(Z) is the function to derive synthetic seismic from 

the impedances Z, as described earlier, and Cd is the 

covariance matrix representing the 'effective' seismic noise. 

 

The (un-scaled) posterior distribution can be derived using 

[5], from which we can derive the maximum a-posteriori 

(MAP) model of Z (kind of like a P50 estimate), or we can use 

MCMC sampling to obtain marginal distributions of interest 

(see also Gunning and Glinsky, 2004). 

 

2. Why not optimal? 

The inversion schemes described above have a number of 

shortcomings. Firstly, the additional regularization 

information needed to ensure reasonable comparisons between 

the deterministic inversion results and well impedance profiles 

at best contains only global or 'pooled' rock physics trends (i.e. 

one rock physics trend for all facies) and at worst no rock 

physics at all.  As an example, one 'trick' often applied is to 

approximate Ln(SI) as linear in Ln(AI):  Ln(SI) = αSI Ln(AI) + 

βSI + δLn(SI) (same for Ln(ρ)).  This changes [3] to 

 

Spp(θ) = a'/2 W(θ) ∆Ln(AI)  + b/2 W(θ) ∆δLn(SI)  + c/2 W(θ) 

∆δLn(ρ)      [8] 

 

Where a' = a + αSI b + αρ c 

 

So now we invert to Ln(AI), δLn(SI) and δLn(ρ), i.e. for SI 

and ρ we invert for the deviation from the global 

linearizations.  So how accurate are these linearizations? In 

Figure 2 you see that the relationship between Ln(AI) and 

Ln(SI) can be reasonably linear, but that the same cannot 

always be said for Ln(AI) and Ln(ρ)! 
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Figure 2: Typical Ln(AI) vs. Ln(SI) (top) and Ln(AI) vs. 

Ln(ρ) (bottom) cross-plots over all facies excluding 

hydrocarbon bearing intervals.  Whereas the Ln(AI) vs. 

Ln(SI) cross-plot is reasonably linear, the Ln(AI) vs. Ln(ρ) 

relation is more complex. 

 

Secondly, most energy in the seismic Sreal comes from 

interfaces between different facies, but the inversion 

methodologies described so far are entirely continuous 

(whereas of course facies are categorical).  This means that 

away from facies interfaces, where the energy wanes, the 

impedance tends to the pooled rock physics trend value (or 

background value), as shown in the figure below. 

 

  
Figure 3: An impedance model (top), the corresponding 

synthetic (middle) and the inverted impedance trace 

(bottom).  Note how away from seismic energy (indicated 

by red arrows) the impedance tends to a value not 

representative of any rock. 

 

These two shortcomings lead to the following realizations: 

1. We need to ensure the regularization is based on un-

pooled, one-per-facies rock physics trends, as a pooled 

rock physics trend (one rock physics trend to describe all 

facies) is demonstrably unrealistic/inaccurate 

2. Therefore we need to jointly invert for facies and for 

impedances per facies! 

 

3. Joint categorical/continuous simultaneous inversion 

For the avoidance of doubt, 'joint' here means that we invert 

both for facies (a categorical variable) and impedances 

(continuous variables), and 'simultaneous' means that we 

invert for more than one impedance in one go from multiple 

partial stacks. 

 

This joint inversion we desire is mathematically demanding, 

as it cannot be written down in closed form (such as [4] 

above), nor can it be solved using standard optimization 

apparatus.  We use an iterative method where we first invert 

for impedances (given a starting facies model), then given 

these impedances we invert for facies labels, then given these 

facies labels we re-invert for impedances and so forth, until a 

suitable solution has been obtained.  This method is called the 

Expectation-Maximization algorithm, or E-M for short.  In the 

M step we estimate the impedances given the expected facies 

labels, and in the E step we estimate the expected facies labels 

given the impedances. 

 

Again using Bayes' theorem, the joint-model posterior 

distribution equivalent of [5] is now more complex 

 

π(Z,F|Sreal) ≈ L(Sreal|Z) p(Z|F) p(F)   [9] 

 

The likelihood function L(Sreal|Z) is the same as [7], and the 

prior distribution p(Z|F) is very similar to [6], the only 

difference being that the prior mean Zo depends on the facies 

label F: 

 

p(Z|F) = exp{-½(Z - Zo(F))T Cp(F)-1 (Z - Zo(F))} / |Cp(F)|½ 

                  [10] 

This facies-dependent prior distribution can be obtained from 

depth trends of, say, AI and cross-plots between AI vs. SI and 

AI vs. ρ.  The difference with section 1 is that now we develop 

these depth trends and cross-plots per facies, each one 

complete with an assessment of uncertainty. 

 

That leaves p(F), the facies prior distribution.  For this we use 

a discrete Markov Random Field.  Expressed simply, any 3D 

seismic lattice consists of many pixels.  We define a set of 

edges connecting the direct neighbours of each of the pixels in 

the inversion window.  Each pair of connecting neighbours 

forms a so-called clique, and so each pixel belongs to six 

cliques (except at edges, corners).  The probability of a 

configuration F of the whole lattice is then defined by the sum 

of potential energies over all the cliques in what is usually 

called a Gibbs distribution: 

 

p(F) ≈ exp(-∑Vc(Fc))                [11] 

 

where Vc represents the “potential energy” of the set of labels 

Fc seen by each clique c. 

 

Comparing the central pixel with each of the 6 individual 

neighbour we can write the potential energy as Vc = ½ β 

I(Fcentre,Fneighbour) where the discrete indicator function I is 1 if 

labels Fcentre and Fneighbour are different and is 0 if they are the 

same, and β is a positive smoothness/continuity parameter.  So 

we can rewrite [11] as ... 

 

p(F) ≈ exp(-∑∑½ β I(F1,F2))                [12] 

 

where the first summation is over all pixels and the second 

summation is over the 6 cliques per centre-pixel 

 

... and thus we penalize (reduce) the probability p(F) if 2 

labels are different. 

 

We have implemented different β's for horizontal and vertical 

smoothness, as geologically horizontal continuity is typically 

larger than vertical continuity.  However, as geology is seldom 

perfectly horizontal, we use the concept of stratigraphic age to 

determine neighbours of the same age (figure 4), which may 

not be the neighbouring pixel at the same time index. 
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Figure 4: A stratigraphic age 'field' assists in determining 

neighbours of the same age. 

 

In the E-step, the facies distribution needs to be updated based 

on the current estimate of the impedances (and the per facies 

rock physics model trends).  I.e. we also need to optimize 

p(F|Z) ≈ p(Z|F) p(F).  For this graph-cutting and so-called 

loopy Bayesian Belief Propagation techniques are used, which 

are beyond the scope of this paper. 

 

Presently the tool inverts only for the maximum a-posteriori 

probability (MAP) estimate (i.e. no sampling, such as 

MCMC).  As all 3 probabilities in [9] are of exponential form, 

determining where the maximum is achieved is equivalent to 

determining where the minimum of the sum of the exponents 

is achieved, which simplifies the algebra. 

 

4) Examples 

The first example shows a trace from a wedge model with a 

slow ca. 2450 m/s sand encased in fast ca. 2800 m/s shale 

(black model in Figure 5).  It is clear the final iteration 

(number 7, grey dashed) of the new Joint 

Categorical/Continuous inversion is superior to the continuous 

inversion result (number 0, red) as described in section 1, 

which is the industry standard at present. 

 

 
Figure 5: A sand embedded in a shale.  Iterations 0, 1, 2 

and 7 (the last one) are labelled.  Note that iteration 0 is the 

normal continuous inversion result, and shows familiar 

problems: the sand value 'overshoots' (2300 m/s instead of 

the real ca. 2450 m/s sand value), a dip to higher velocities 

in the middle of the sand, and away from the shale/sand 

and sand/shale interfaces the impedance value tends to a 

neither-sand-nor-shale value. 

 

In the second example we have applied the new Joint 

Categorical/Continuous inversion to the 3D seismic of the 

Stybarrow field, offshore Western Australia, as shown in 

Figure 6. 

 

The inversion to AI was performed twice, once with 

horizontal β values equal to 0 (no horizontal continuity), and 

once equal to 0.5.  We see that imposing some horizontal 

continuity in this case (bottom of Figure 6) improves both the 

facies inversion (less salt and pepper effect, and therefore 

more geological) and the density inversion (a less dappled ρ 

image).  The velocity image is less sensitive to the β values, 

which is understandable, as Vp has most effect on the 

impedance. 

 

Figure 6: The normal incidence section (left), inverted 

results (facies labels, Vp and ρ) with horizontal β values 

equal to 0 (top), and same inverted results with horizontal 

β values equal  to 0.5 (bottom) 

 

CONCLUSIONS 
 

In-depth analysis of the present industry standard continuous 

simultaneous inversion method highlighted some 

shortcomings, which require the following remedies: 

1. Prior constraints based on un-pooled (i.e. per facies) rock 

physics trends need to be incorporated in the ideal 

inversion algorithm, as rock type is crucial. 

2. This means the ideal inversion needs to invert not only to 

continuous impedances, but also jointly to categorical 

facies! 

 

In this paper we have introduced a new joint 

categorical/continuous simultaneous inversion method which 

implements these two remedies, and which does not show the 

unsightly artefacts of standard methods such as impedances 

tending to a non-geological value away from seismic energy. 

 

En passant the new technique has some other attractive 

features, such as the ability to hardwire the facies labels at 

wells.  This is quite a unique way to use well data directly in 

seismic inversion (normally it is only used indirectly, and in 

inversion QC). 
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