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INTRODUCTION 
  

Automated image analysis techniques can assist geophysical 

analysis in two ways: firstly by allowing preliminary 

screening of large quantities of data to be performed quickly 

and efficiently; and secondly, perhaps more importantly, by 

facilitating the search for features of interest within seismic 

data in a non-subjective manner. 

 

Phase congruency is an edge detection algorithm that differs 

from traditional approaches by defining edges as points where 

the Fourier components of a signal are maximally in phase 

(Morrone and Owens, 1987; Morrone and Burr 1988).  In a 

study by Russell et al. (2010), 2D phase congruency was 

applied to horizontal time slices within a 3D volume in an 

attempt to enhance seismic discontinuities.  However, seismic 

discontinuities are 3D features and require a 3D approach to 

be properly resolved.  Also, as horizons are rarely parallel to 

horizontal time slices, horizons appear discontinuous.  To 

address these issues we have developed a full 3D 

implementation of phase congruency and compared its 

performance with other standard techniques on seismic data. 

 

PHASE CONGRUENCY 
 

Traditionally, image feature detectors have been developed to 

identify points of high gradient in the signal.  However, it has 

been shown that points of high gradient may only represent a 

limited subset of the features of interest (Kovesi 2002). An 

alternative model of feature detection is that points of interest 

are perceived at locations of phase congruency (Morrone and 

Owens, 1987; Morrone and Burr, 1988).  Figure 1 illustrates 

the congruence of phase that occurs at the point of a step in a 

square waveform and at the peaks of a triangular waveform.  

Depending on the angle at which congruence of phase occurs 

a wide range of different feature types can be produced.  Thus, 

this model of feature perception allows a broad range of 

feature types to be detected within the one framework. 

 

 
Figure 1.  Congruence of phase at the point of the step in a 

Fourier series forming a square wave (top panel), and at 

the peaks of a triangular wave (bottom panel). 

 

The measurement of phase congruency at a point in a signal 

can be seen geometrically in Figure 2.  The local, complex 

valued, Fourier components at a location x in the signal will 

have an amplitude       and phase angle      .  Figure 2 

SUMMARY 
 

Automated image analysis techniques can be effectively 

used to detect discontinuities (e.g. faults, pinchouts, 

channels, etc.) within seismic data in a non-subjective 

manner. Conventional image processing techniques, such 

as the coherency cube, typically locate discontinuities by 

finding regions of sharp intensity shifts and are thereby 

sensitive to contrast variations and noise. Here, we 

present a phase-based technique that offers contrast-

invariant and noise-robust feature characterisation 

through local phase and orientation information.  

 

Phase congruency is an edge-detection algorithm that 

differs from traditional approaches by defining edges as 

points where the Fourier components of a signal are 

maximally in phase. Applying 2D phase congruency to 

horizontal time slices extracted from a 3D seismic 

volume is problematic, though, because horizons are 

rarely parallel to horizontal time slices, causing horizon 

boundaries to appear artificially discontinuous. To better 

detect 3D seismic discontinuities, we extend phase 

congruency to a 3D algorithm using conic spread filters 

that provides a localised, multi-scale and dip-independent 

feature detector.  

 

Preliminary results show that 3D phase congruency is 

capable of detecting velocity anomalies, but has some 

limitations in identifying fault boundaries in seismic data.  

However, it can provide an increased level of feature 

detail over conventional coherency cube processing. 

More importantly, these results indicate the potential for 

using multidimensional phase-based algorithms in 3D/4D 

seismic processing and imaging workflows, with 

particular applications in image denoising, image 

registration, feature detection, and velocity model 

verification. 
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plots these local Fourier components as complex vectors 

adding head to tail.  The magnitude of the vector from the 

origin to the end point is the Local Energy       .  The 

measure of phase congruency devised by Morrone and Owens 

(1987) is  

       
      

∑     
 

 
Figure 2.  Polar diagram of local Fourier components at a 

location x in the signal, plotted head to tail, illustrating the 

computation of phase congruency. 

 

Under this definition phase congruency is the ratio of        
to the overall path length taken by the local Fourier 

components in reaching the end point. At a point of phase 

congruency all the phase vectors will be aligned and the ratio 

of        to ∑      will be one.  If there is no coherence of 

phase this ratio falls to a minimum of zero.  Thus, phase 

congruency is a dimensionless quantity that is unaffected by 

signal offsets or contrast.  This makes it a useful tool for 

analysing the wide range of values that may be present in 

geophysical signals.   

 

However, in its basic form, this measure of phase congruency 

is sensitive to noise and is also degenerate if there is only one 

frequency component present in the signal.  Accordingly this 

measure of phase congruency has been further developed by 

Kovesi (1999) to incorporate a more sensitive measure of 

phase deviation and a weighting for the spread of frequencies 

present in the signal.  To account for noise a threshold is set 

defining the magnitude of local energy in the signal that can 

be expected to arise naturally from the noise in the signal, this 

is indicated by the noise circle shown in Figure 2.  This 

threshold can be set manually but can also be estimated 

automatically from the signal itself (Kovesi, 1999).  Then, 

when computing phase congruency, only the amount that 

       exceeds the radius of the noise circle is considered.  

This noise compensation scheme bears some similarities to 

wavelet shrinkage denoising (Donoho, 1995). 

 

The description of phase congruency outlined above only 

applies to 1D signals.  In 2D we implement phase congruency 

by convolving the signal with a series of oriented 2D complex 

valued log-Gabor filters over a range of different centre 

frequencies.  From this we obtain local phase and amplitude 

data at a number of scales and over a series of orientations 

(Field, 1987; Kovesi, 1999).  Typically, filters at three to four 

scales over six orientations are used. For efficiency the 

convolutions of the signal with the log-Gabor filters are 

performed in the Fourier domain.  The transfer functions of 

the filters form a rosette around the origin (Figure 3).  Phase 

congruency is then evaluated in each of the orientations 

independently and a covariance matrix relating phase 

congruency in the x and y directions is formed.  The maximum 

eigenvalue provides an overall measure of phase congruency, 

and the corresponding eigenvector indicates the local 

orientation of the feature in the signal.  The minimum 

eigenvalue of the covariance matrix is also useful in that it 

provides an indication of the isotropy of the feature.  For 

further details of the implementation of phase congruency in 

2D see Kovesi (1999, 2000, 2003). 

 

To extend the computation of phase congruency to 3D we 

adopt a similar approach.  The main consideration is to obtain 

good filter coverage over all orientations in 3D while using a 

minimal number of filters in order to maintain a tractable 

computational load.  We have chosen to use the surface 

normals of the faces of an icosahedron to define the 3D filter 

orientations, as shown in Figure 3 (Richardson, 2010).  This 

results in ten filter orientations.  While more orientations 

might be preferable to obtain a more complete filter coverage 

over all 3D orientations this appears to be a reasonable 

compromise that allows computation in an acceptable amount 

of time.   

       
Figure 3. In 2D the transfer functions of the log-Gabor 

filters form a rosette in the 2D frequency plane (left).  This 

example shows filters over three scales and six 

orientations.  A similar approach is used to define the 

filters in 3D using the surface normals of the faces of an 

icosahedron to define the filter orientations (right). 

 

RESULTS 

 

We applied the phase congruency analysis to a time-migrated 

seismic data acquired in Western Australia’s Carnarvon Basin.  

The geology in this survey region is noted for significant 

faulting and localized near-surface velocity anomalies.  We 

extracted two 128x128x128 subcubes from the full data 

volume for testing our 3D phase-congruency algorithm.  

 

We conducted two experiments comparing the effectiveness of 

using the coherency cube, and 2D and 3D phase congruency at 

resolving two different features noted in the data.  The first 

test involved a high-amplitude reflector feature interpreted to 

be a mud volcano, which appears as a (poorly resolved) 

velocity anomaly in Figures 4 and 5. The second experiment 

involved trying to resolve faults in an area of complex 

geology, shown in Figures 6 and 7. 

 

We used filters over four scales with a minimum wavelength 

of three pixels increasing by a factor of two at each scale.  For 

3D phase congruency we used ten filter orientations, as 

defined by the faces of an icosahedron.  The 2D phase 

congruency results were obtained using six orientations. The 
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coherency volume calculations were based on a 3x3x3 volume 

window. 

 

Figures 4 and 5 show that 3D phase congruency is effective in 

detecting velocity anomalies caused by bright reflectors.  In 

comparison to other methods, 3D phase congruency provides 

significantly more detail on the resulting seismic disturbances 

underneath while 2D phase congruency produces a large 

number of anomalous features caused by the separation of 

horizons on each slice.  Figures 6 and 7 show that phase 

congruency is capable of detecting fault boundaries, but it 

lacks the clarity and cleanliness of the coherency cube 

response.  Phase congruency detects the step edges caused by 

the phase shift across the fault and, while this result has 

applications in image matching and velocity modelling, it 

lacks a clear and simple representation of the 3D fault 

structure within the image.  

 

CONCLUSIONS 
 

While more investigation into the behaviour of phase 

congruency at faults is needed, it appears that faults are mainly 

characterised by a local change in signal orientation rather 

than a sharp change in signal strength.  Thus, phase 

congruency on its own may not be the optimal way to detect 

faults.  Future work will focus on detecting local-phase 

discontinuities to provide better measures for feature 

enhancement.  However, where 3D phase congruency may 

prove most useful is in the identification of local orientations 

within the data volume, and the identification of orientation 

discontinuities.  It is this area that we plan to develop in the 

future. Orientation data provides important geological 

indications.  The use of 3D phase congruency provides a 

framework from which orientation information can be 

obtained regardless of the data volume coordinate system.  In 

comparison, orientation data calculated with 2D phase 

congruency is confined to the analysis plane and the 

coherency cube provides no easy access to local orientation.  
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Figure 4: Vertical cross-section of the velocity anomaly test 

image (top left), coherency cube (top right), maximum 

moment of 3D phase congruency (bottom left), 2D phase 

congruency (bottom right). 

 

 
Figure 5.  3D visualisation of the response from the 

coherency cube (top left), 2D phase congruency (top right), 

and the maximum and minimum moments of 3D phase 

congruency (bottom left and right, respectively) for the 

velocity anomaly. 
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Figure 6: Vertical cross-section of the fault test image (top 

left), coherency cube (top right), maximum moment of 3D 

phase congruency (bottom left), 2D phase congruency 

(bottom right). 

 
 

Figure 7.  3D visualisation of the response from the 

coherency cube (top left), 2D phase congruency (top right), 

and the maximum and minimum moments of 3D phase 

congruency (bottom left and right respectively) for the 

fault test image. 

 

 

 

 

 

 

 


