Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Articles citing this paper

3D monitoring spatio–temporal effects of herbicide on a whole plant using combined range and chlorophyll a fluorescence imaging

Atsumi Konishi A B , Akira Eguchi A , Fumiki Hosoi A and Kenji Omasa A C
+ Author Affiliations
- Author Affiliations

A Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.

B Present address: Marine Farm, Yanmar Co., Ltd, 3286 Itoharu, Musashi-machi, Kunisaki-city, Oita 873-0421, Japan.

C Corresponding author. Email: aomasa@mail.ecc.u-tokyo.ac.jp

This paper originates from a presentation at the 1st International Plant Phenomics Symposium, Canberra, Australia, April 2009.

Functional Plant Biology 36(11) 874-879 https://doi.org/10.1071/FP09108
Submitted: 12 May 2009  Accepted: 24 August 2009   Published: 5 November 2009



35 articles found in Crossref database.

Computer Reconstruction of Plant Growth and Chlorophyll Fluorescence Emission in Three Spatial Dimensions
Bellasio Chandra, Olejníčková Julie, Tesař Radek, Šebela David, Nedbal Ladislav
Sensors. 2012 12(1). p.1052
Automatic method for segmenting leaves by combining 2D and 3D image-processing techniques
Itakura Kenta, Hosoi Fumiki
Applied Optics. 2020 59(2). p.545
Estimation of Leaf Inclination Angle in Three-Dimensional Plant Images Obtained from Lidar
Itakura Kenta, Hosoi Fumiki
Remote Sensing. 2019 11(3). p.344
Hyperspectral imaging and 3D technologies for plant phenotyping: From satellite to close-range sensing
Liu Huajian, Bruning Brooke, Garnett Trevor, Berger Bettina
Computers and Electronics in Agriculture. 2020 175 p.105621
Remote Sensing of Plant Functioning and the Development for Phenomics Researches
OMASA Kenji
TRENDS IN THE SCIENCES. 2016 21(2). p.2_72
Chlorophyll fluorescence imaging captures photochemical efficiency of grain sorghum (Sorghum bicolor) in a field setting
Herritt Matthew T., Pauli Duke, Mockler Todd C., Thompson Alison L.
Plant Methods. 2020 16(1).
High-throughput shoot imaging to study drought responses
Berger B., Parent B., Tester M.
Journal of Experimental Botany. 2010 61(13). p.3519
Estimating Chlorophyll Fluorescence Parameters Using the Joint Fraunhofer Line Depth and Laser-Induced Saturation Pulse (FLD-LISP) Method in Different Plant Species
Rahimzadeh-Bajgiran Parinaz, Tubuxin Bayaer, Omasa Kenji
Remote Sensing. 2017 9(6). p.599
Estimation of tree structure parameters from video frames with removal of blurred images using machine learning
ITAKURA Kenta, HOSOI Fumiki
Journal of Agricultural Meteorology. 2018 74(4). p.154
Estimating 3D Chlorophyll Content Distribution of Trees Using an Image Fusion Method Between 2D Camera and 3D Portable Scanning Lidar
Hosoi Fumiki, Umeyama Sho, Kuo Kuangting
Remote Sensing. 2019 11(18). p.2134
Remote Sensing of Plant Biodiversity (2020)
Lausch Angela, Heurich Marco, Magdon Paul, Rocchini Duccio, Schulz Karsten, Bumberger Jan, King Doug J.
LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics?
Lin Yi
Computers and Electronics in Agriculture. 2015 119 p.61
Assessing leaf photoprotective mechanisms using terrestrial LiDAR: towards mapping canopy photosynthetic performance in three dimensions
Magney Troy S., Eusden Spencer A., Eitel Jan U. H., Logan Barry A., Jiang Jingjue, Vierling Lee A.
New Phytologist. 2014 201(1). p.344
3-D Modeling of Tomato Canopies Using a High-Resolution Portable Scanning Lidar for Extracting Structural Information
Hosoi Fumiki, Nakabayashi Kazushige, Omasa Kenji
Sensors. 2011 11(2). p.2166
Journal of the Japan society of photogrammetry and remote sensing. 2010 49(4). p.210
A Review of Imaging Techniques for Plant Phenotyping
Li Lei, Zhang Qin, Huang Danfeng
Sensors. 2014 14(11). p.20078
Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging
Ge Yufeng, Bai Geng, Stoerger Vincent, Schnable James C.
Computers and Electronics in Agriculture. 2016 127 p.625
Voxel-based leaf area estimation from three-dimensional plant images
ITAKURA Kenta, HOSOI Fumiki
Journal of Agricultural Meteorology. 2019 75(4). p.211
SPICY: towards automated phenotyping of large pepper plants in the greenhouse
van der Heijden Gerie, Song Yu, Horgan Graham, Polder Gerrit, Dieleman Anja, Bink Marco, Palloix Alain, van Eeuwijk Fred, Glasbey Chris
Functional Plant Biology. 2012 39(11). p.870
Biosensors for Sustainable Food - New Opportunities and Technical Challenges (2016)
Hoffmeister D.
Frequently asked questions about chlorophyll fluorescence, the sequel
Kalaji Hazem M., Schansker Gert, Brestic Marian, Bussotti Filippo, Calatayud Angeles, Ferroni Lorenzo, Goltsev Vasilij, Guidi Lucia, Jajoo Anjana, Li Pengmin, Losciale Pasquale, Mishra Vinod K., Misra Amarendra N., Nebauer Sergio G., Pancaldi Simonetta, Penella Consuelo, Pollastrini Martina, Suresh Kancherla, Tambussi Eduardo, Yanniccari Marcos, Zivcak Marek, Cetner Magdalena D., Samborska Izabela A., Stirbet Alexandrina, Olsovska Katarina, Kunderlikova Kristyna, Shelonzek Henry, Rusinowski Szymon, Bąba Wojciech
Photosynthesis Research. 2017 132(1). p.13
Three-Dimensional Monitoring of Plant Structural Parameters and Chlorophyll Distribution
Itakura Kenta, Kamakura Itchoku, Hosoi Fumiki
Sensors. 2019 19(2). p.413
Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves
Tubuxin Bayaer, Rahimzadeh-Bajgiran Parinaz, Ginnan Yusaku, Hosoi Fumiki, Omasa Kenji
Journal of Experimental Botany. 2015 66(18). p.5595
Understanding Forest Health with Remote Sensing-Part II—A Review of Approaches and Data Models
Lausch Angela, Erasmi Stefan, King Douglas, Magdon Paul, Heurich Marco
Remote Sensing. 2017 9(2). p.129
Photosynthesis: Structures, Mechanisms, and Applications (2017)
Nath Krishna, O’Donnell James P., Lu Yan
Phenotypic characterization of Arabidopsis thaliana lines overexpressing AVP1 and MIOX4 in response to abiotic stresses
Nepal Nirman, Yactayo‐Chang Jessica P., Gable Ricky, Wilkie Austin, Martin Jazmin, Aniemena Chineche L., Gaxiola Roberto, Lorence Argelia
Applications in Plant Sciences. 2020 8(8).
Snapshot imaging Fraunhofer line discriminator for detection of plant fluorescence
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI (2015)
Velez-Reyes Miguel, Kruse Fred A., Gupta Roy S., Kudenov M. W.
Advanced phenotyping and phenotype data analysis for the study of plant growth and development
Rahaman Md. Matiur, Chen Dijun, Gillani Zeeshan, Klukas Christian, Chen Ming
Frontiers in Plant Science. 2015 6
Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants (2018)
Singh Balwant, Mishra Shefali, Bohra Abhishek, Joshi Rohit, Siddique Kadambot H.M.
Plant Cell Biology (2019)
Snapshot imaging Fraunhofer line discriminator
2014 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy) (2014)
Roy Subharup Gupta, Kudenov Michael W.
Chlorophyll Fluorescence Imaging for Early Detection of Drought and Heat Stress in Strawberry Plants
Arief Muhammad Akbar Andi, Kim Hangi, Kurniawan Hary, Nugroho Andri Prima, Kim Taehyun, Cho Byoung-Kwan
Plants. 2023 12(6). p.1387
Automatic Leaf Segmentation for Estimating Leaf Area and Leaf Inclination Angle in 3D Plant Images
Itakura Kenta, Hosoi Fumiki
Sensors. 2018 18(10). p.3576
Reconstruction method and optimum range of camera-shooting angle for 3D plant modeling using a multi-camera photography system
Lu Xingtong, Ono Eiichi, Lu Shan, Zhang Yu, Teng Poching, Aono Mitsuko, Shimizu Yo, Hosoi Fumiki, Omasa Kenji
Plant Methods. 2020 16(1).
Phenomics – technologies to relieve the phenotyping bottleneck
Furbank Robert T., Tester Mark
Trends in Plant Science. 2011 16(12). p.635

Committee on Publication Ethics


Abstract Export Citation Get Permission