Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Articles citing this paper

δ13 Values of C4 Types in Grasses

PW Hattersley
9(2) pp.139 - 154


90 articles found in Crossref database.

Km (CO2) values of ribulose-1,5-bisphosphate carboxylase in grasses of different C4 type
Hock-Hin Yeoh, Hattersley Paul
Phytochemistry. 1985 24(10). p.2277
Variation in the Stable Carbon and Nitrogen Isotope Composition of Plants and Soil along a Precipitation Gradient in Northern China
Ma Jian-Ying, Sun Wei, Liu Xiao-Ning, Chen Fa-Hu, Kytöviita Minna-Maarit
PLoS ONE. 2012 7(12). p.e51894
The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment
Ghannoum O., Caemmerer S. Von, Ziska L. H., Conroy J. P.
Plant, Cell & Environment. 2000 23(9). p.931
Limitations on the climatic and ecological signals provided by the δ13C values of phytoliths from a C4 North American prairie grass
Webb Elizabeth A., Longstaffe Fred J.
Geochimica et Cosmochimica Acta. 2010 74(11). p.3041
Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants
Cernusak Lucas A., Ubierna Nerea, Winter Klaus, Holtum Joseph A. M., Marshall John D., Farquhar Graham D.
New Phytologist. 2013 200(4). p.950
Stable Isotopic Evidence for the Widespread Presence of Oxygen-Containing Chemical Linkages between α-Cellulose and Lignin in Poaceae (Gramineae) Grass Leaves
Zhou Youping, Yin Xijie, Yang Hubiao, Su Jing, Yu Huimin, Wang Yan, Zhou Shuixiu, Zavadlav Saša
ACS Sustainable Chemistry & Engineering. 2017 5(4). p.3250
Environmental influences on rabbit and hare bone isotope abundances: Implications for paleoenvironmental research
Somerville Andrew D., Froehle Andrew W., Schoeninger Margaret J.
Palaeogeography, Palaeoclimatology, Palaeoecology. 2018 497 p.91
The potential of stable carbon and nitrogen isotope analysis of foxtail and broomcorn millets for investigating ancient farming systems
Dong Yu, Bi Xiaoguang, Wu Rubi, Belfield Eric J., Harberd Nicholas P., Christensen Bent T., Charles Mike, Bogaard Amy
Frontiers in Plant Science. 2022 13
Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta‐analytic test of current theories and perceptions
Wand Stephanie J. E., Midgley GuY. F., Jones Michael H., Curtis Peter S.
Global Change Biology. 1999 5(6). p.723
Carbon isotope composition of C4 grasses is influenced by light and water supply
BUCHMANN N., BROOKS J. R., RAPP K. D., EHLERINGER J. R.
Plant, Cell & Environment. 1996 19(4). p.392
Carbon isotope discrimination as a tool to explore C4 photosynthesis
Caemmerer Susanne von, Ghannoum Oula, Pengelly Jasper J. L., Cousins Asaph B.
Journal of Experimental Botany. 2014 65(13). p.3459
Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation
Kromdijk J., Ubierna N., Cousins A. B., Griffiths H.
Journal of Experimental Botany. 2014 65(13). p.3443
Photosynthetic characteristics of the shade‐adapted C4grassMuhlenbergia sobolifera(Muhl.) Trin.: control of development of photorespiration by growth temperature
SMITH M., WU Y.
Plant, Cell & Environment. 1994 17(6). p.763
The physiology ofSalix
Raven J. A.
Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences. 1992 98 p.49
Carbon Isotopes in Photosynthesis
O'Leary Marion H.
BioScience. 1988 38(5). p.328
The Early Origins of Terrestrial C4 Photosynthesis
Tipple Brett J., Pagani Mark
Annual Review of Earth and Planetary Sciences. 2007 35(1). p.435
Correlation between δ13C and δ15N in C4 and C3 plants of natural and artificial sand-binding microhabitats in the Tengger Desert of China
Zhao Liangju, Xiao Honglang, Cheng Guodong, Liu Xiaohong, Yang Qiu, Yin Li, Li Caizhi
Ecological Informatics. 2010 5(3). p.177
Stable carbon isotope reconstruction of ungulate diet changes through the seasonal cycle
Codron Daryl, Lee-Thorp Julia A., Sponheimer Matt, Codron Jacqui
South African Journal of Wildlife Research. 2007 37(2). p.117
Models of carbon metabolism in C3‐C4 intermediate plants as applied to the evolution of C4 photosynthesis
PEISKER M.
Plant, Cell & Environment. 1986 9(8). p.627
DIETS OF EAST AFRICAN BOVIDAE BASED ON STABLE ISOTOPE ANALYSIS
Cerling Thure E., Harris John M., Passey Benjamin H.
Journal of Mammalogy. 2003 84(2). p.456
C4 Plant Biology (1999)
Dengler Nancy G., Nelson Timothy
Stable Isotope Ecology in the Omo‐Turkana Basin
Cerling Thure E., Levin Naomi E., Passey Benjamin H.
Evolutionary Anthropology: Issues, News, and Reviews. 2011 20(6). p.228
Early pastoral mobility and seasonality in Kenya assessed through stable isotope analysis
Janzen Anneke, Balasse Marie, Ambrose Stanley H.
Journal of Archaeological Science. 2020 117 p.105099
Influence of water Availability on Photosynthesis, Water Potential, Leaf δ13C, and Phenology in Dominant C4Grasses In Kansas, USA
Maricle Brian R., Caudle Keri L., Adler Peter B.
Transactions of the Kansas Academy of Science. 2015 118(3 & 4). p.173
Stable Isotopes in Ecological Research (1989)
Berry J. A.
Effects of Phosphorus and Water Supply on Yield, Transpirational Water‐Use Efficiency, and Carbon Isotope Discrimination of Pearl Millet
Br ü ck H., Payne W. A., Sattelmacher B.
Crop Science. 2000 40(1). p.120
C4 Photosynthesis and Related CO2 Concentrating Mechanisms (2010)
Ghannoum Oula, Evans John R., von Caemmerer Susanne
Determination of leaf carbon isotope discrimination in C4 plants under variable N and water supply
Yang Hao, Yu Qiang, Sheng Wen-ping, Li Sheng-gong, Tian Jing
Scientific Reports. 2017 7(1).
Diversity, metabolic types and ?13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions
Schulze E. -D., Ellis R., Schulze W., Trimborn P., Ziegler H.
Oecologia. 1996 106(3). p.352
The influence of N metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants
RAVEN JOHN A., FARQUHAR GRAHAM D.
New Phytologist. 1990 116(3). p.505
Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna
Codron Jacqui, Codron Daryl, Lee-Thorp Julia A., Sponheimer Matt, Bond William J., de Ruiter Darryl, Grant Rina
Journal of Archaeological Science. 2005 32(12). p.1757
Effects of Relative Humidity on Carbon Isotope Fractionation in Plants
Madhavan S., Treichel Isabel, O'Leary Marion H.
Botanica Acta. 1991 104(4). p.292
Gene discovery in cereals through quantitative trait loci and expression analysis in water‐use efficiency measured by carbon isotope discrimination
CHEN JING, CHANG SCOTT X., ANYIA ANTHONY O.
Plant, Cell & Environment. 2011 34(12). p.2009
Using continuous stable isotope measurements to partition net ecosystem CO2 exchange
ZHANG JIANMIN, GRIFFIS TIMOTHY J., BAKER JOHN M.
Plant, Cell & Environment. 2006 29(4). p.483
Atmosphere, ecology and evolution: what drove the Miocene expansion of C4grasslands?
Osborne Colin P.
Journal of Ecology. 2008 96(1). p.35
C4 Plant Biology (1999)
Cerling Thure E.
Carbon and nitrogen isotope variability in the seeds of two African millet species: Pennisetum glaucum and Eleusine coracana
Reid Rachel E.B., Lalk Ellen, Marshall Fiona, Liu Xinyi
Rapid Communications in Mass Spectrometry. 2018 32(19). p.1693
Timing of C4 grass expansion across sub-Saharan Africa
Ségalen Loïc, Lee-Thorp Julia A., Cerling Thure
Journal of Human Evolution. 2007 53(5). p.549
Elevated Carbon Dioxide (2011)
Does season and grazing influence the δ 13 C and δ 15 N of C 4 native grasses in semi-arid rangelands of the Pilbara region of NW Australia?
Ingram Lachlan J., Adams Mark A.
Agriculture, Ecosystems & Environment. 2017 236 p.277
Gas exchange characteristics of leaves of four species of grain amaranth
Harley Peter C., Ehleringer James
Field Crops Research. 1987 17(2). p.141
Diets of savanna ungulates from stable carbon isotope composition of faeces
Codron D., Codron J., Lee‐Thorp J. A., Sponheimer M., De Ruiter D., Sealy J., Grant R., Fourie N.
Journal of Zoology. 2007 273(1). p.21
Isotopic Fractionation of Hydrogen in Plants
Smith B. N., Ziegler H.
Botanica Acta. 1990 103(4). p.335
Evolutionary lineage explains trait variation among 75 coexisting grass species
Donnelly Ryan C., Wedel Emily R., Taylor Jeffrey H., Nippert Jesse B., Helliker Brent R., Riley William J., Still Christopher J., Griffith Daniel M.
New Phytologist. 2023 239(3). p.875
Plant Physiological Ecology (2000)
Ehleringer James R., Osmond C. Barry
Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance
Monneveux Philippe, Sheshshayee Madavalam S., Akhter Javed, Ribaut Jean-Marcel
Plant Science. 2007 173(4). p.390
Experimental archaeological study in China: implications for reconstruction of past manuring and dietary practices indicated by δ15N values of Setaria italica and Panicum miliaceum
Ouyang Huiyong, Shang Xue, Hu Yaowu, Feng Zhizhen, Liu Junchi, Li Xiaoqiang
Heritage Science. 2024 12(1).
The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa
van der Merwe Nikolaas J., Thackeray J.Francis, Lee-Thorp Julia A., Luyt Julie
Journal of Human Evolution. 2003 44(5). p.581
Comparative ultrastructure and gas exchange characteristics of the C3–C4 intermediate Neurachne minor S. T. Blake (Poaceae)
HATTERSLEY P. W., WONG SUAN‐CHIN, PERRY S., ROKSANDIC Z.
Plant, Cell & Environment. 1986 9(3). p.217
Biochemical and transcriptomic analysis of maize diversity to elucidate drivers of leaf carbon isotope composition
Kolbe Allison R., Studer Anthony J., Cousins Asaph B.
Functional Plant Biology. 2018 45(5). p.489
The photosynthetic characteristics of differently shaped leaves in Populus euphratica Olivier
Wang H.L., Yang S.D., Zhang C.L.
Photosynthetica. 1997 34(4). p.545
Photorespiration in C4 grasses remains slow under drought conditions
CARMO‐SILVA ANA E., POWERS STEPHEN J., KEYS ALFRED J., ARRABAÇA MARIA CELESTE, PARRY MARTIN A. J.
Plant, Cell & Environment. 2008 31(7). p.925
Does greater leaf‐level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass?
DOHLEMAN F. G., HEATON E. A., LEAKEY A. D. B., LONG S. P.
Plant, Cell & Environment. 2009 32(11). p.1525
Plants for Environmental Studies (1997)
Kapustka Lawrence
Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses
Sonawane Balasaheb V, Sharwood Robert E, Whitney Spencer, Ghannoum Oula
Journal of Experimental Botany. 2018 69(12). p.3053
Comparative ecophysiology of C3 and C4 plants
PEARCY R. W., EHLERINGER J.
Plant, Cell & Environment. 1984 7(1). p.1
Variations in nitrogen use efficiency reflect the biochemical subtype while variations in water use efficiency reflect the evolutionary lineage of C4 grasses at inter‐glacial CO2
Pinto Harshini, Powell Jeff R., Sharwood Robert E., Tissue David T., Ghannoum Oula
Plant, Cell & Environment. 2016 39(3). p.514
Reconstructing palaeoenvironment from δ13C and δ15N values of soil organic matter: A calibration from arid and wetter elevation transects in Ethiopia
Terwilliger Valery J., Eshetu Zewdu, Colman Albert, Bekele Tesfaye, Gezahgne Alemu, Fogel Marilyn L.
Geoderma. 2008 147(3-4). p.197
Genetic diversity of transpiration efficiency in sorghum
Xin Zhanguo, Aiken Rob, Burke John
Field Crops Research. 2009 111(1-2). p.74
Carbon stable isotope analysis of cereal remains as a way to reconstruct water availability: preliminary results
Flohr Pascal, Müldner Gundula, Jenkins Emma
Water History. 2011 3(2). p.121
Correspondence between δ13C and δ15N in soils suggests coordinated fractionation processes for soil C and N
Nel Jacques A., Craine Joseph M., Cramer Michael D.
Plant and Soil. 2018 423(1-2). p.257
Plant stable isotope composition across habitat gradients in a semi‐arid savanna: implications for environmental reconstruction
CODRON JACQUELINE, LEE‐THORP JULIA A., SPONHEIMER MATT, CODRON DARYL
Journal of Quaternary Science. 2013 28(3). p.301
Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses
Cernusak Lucas A., Tcherkez Guillaume, Keitel Claudia, Cornwell William K., Santiago Louis S., Knohl Alexander, Barbour Margaret M., Williams David G., Reich Peter B., Ellsworth David S., Dawson Todd E., Griffiths Howard G., Farquhar Graham D., Wright Ian J.
Functional Plant Biology. 2009 36(3). p.199
Carbon isotope fractionation during low temperature carbonization of foxtail and common millets
Yang Qing, Li Xiaoqiang, Liu Weiguo, Zhou Xinying, Zhao Keliang, Sun Nan
Organic Geochemistry. 2011 42(7). p.713
Variability of the stable carbon isotope ratio in modern and archaeological millets: evidence from northern China
An Cheng-Bang, Dong Weimiao, Li Hu, Zhang Pingyu, Zhao Yongtao, Zhao Xueye, Yu Shi-Yong
Journal of Archaeological Science. 2015 53 p.316
Carbon: terrestrial C4 plants
PEISKER M., HENDERSON S. A.
Plant, Cell & Environment. 1992 15(9). p.987
Treatise on Geochemistry (2014)
Cerling T.E.
Genotypic variation of the interactive effects of elevated temperature and CO2 on leaf gas exchange and early growth of sugarcane
De Silva A. L. Chandrajith, Senarathna H. A. K. N. Nishadi, De Costa W. A. Janendra M.
Physiologia Plantarum. 2021 173(4). p.2276
DIFFERING ONTOGENETIC ORIGINS OF PCR (“KRANZ”) SHEATHS IN LEAF BLADES OF C4 GRASSES (POACEAE)
Dengler Nancy G., Dengler Ronald E., Hattersley Paul W.
American Journal of Botany. 1985 72(2). p.284
Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway
RAVEN JOHN A.
New Phytologist. 1990 116(1). p.1
A New Approach to Distinguishing Photosynthetic Types of Plants. A Case Study in Northeast China Transect (NECT) Platform
Tang H.P., Zhang X.S.
Photosynthetica. 1999 37(1).
C4 photosynthetic isotope exchange in NAD-ME- and NADP-ME-type grasses
Cousins Asaph B., Badger Murray R., von Caemmerer Susanne
Journal of Experimental Botany. 2008 59(7). p.1695
Stable Isotopes in Ecology and Environmental Science (2007)
Marshall John D., Brooks J. Renee, Lajtha Kate
Environmental and Hydrological Changes of Lake Coatetelco in Central Mesoamerica (Southwest Mexico) Over the Holocene and Comparison With Climatic Forcing
García-Arriola Oscar Agesandro, Roy Priyadarsi D., Vargas-Martínez Irma Gabriela, Giron-García Ma. Patricia, Curtis Jason H., Israde-Alcantara Isabel, Quiroz-Jimenez Jesús David
Frontiers in Ecology and Evolution. 2022 10
Investigation of the controlled factors influencing carbon isotope composition of foxtail and common millet on the Chinese Loess Plateau
Yang Qing, Li XiaoQiang
Science China Earth Sciences. 2015 58(12). p.2296
Intraspecific carbon and nitrogen isotopic variability in foxtail millet (Setaria italica)
Lightfoot Emma, Przelomska Natalia, Craven Martha, O′Connell Tamsin C., He Lu, Hunt Harriet V., Jones Martin K.
Rapid Communications in Mass Spectrometry. 2016 30(13). p.1475
Positive feedbacks between savanna tree size and the nutritional characteristics of “Islands of fertility” are amplified by sociable weaver colonies
Aikins T.K., Cramer M.D., Thomson R.L.
Journal of Arid Environments. 2023 209 p.104903
Physiological and transcriptional analyses of developmental stages along sugarcane leaf
Mattiello Lucia, Riaño-Pachón Diego Mauricio, Martins Marina Camara Mattos, da Cruz Larissa Prado, Bassi Denis, Marchiori Paulo Eduardo Ribeiro, Ribeiro Rafael Vasconcelos, Labate Mônica T. Veneziano, Labate Carlos Alberto, Menossi Marcelo
BMC Plant Biology. 2015 15(1).
CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2
Boom A., Marchant R., Hooghiemstra H., Sinninghe Damsté J.S.
Palaeogeography, Palaeoclimatology, Palaeoecology. 2002 177(1-2). p.151
Global Biogeochemical Cycles in the Climate System (2001)
Ehleringer James R., Cerling Thure E.
On allowing for transient variation in end‐member δ13C values in partitioning soil C fluxes from net ecosystem respiration
McCloskey Christopher S., Otten Wilfred, Paterson Eric, Kirk Guy J. D.
European Journal of Soil Science. 2021 72(6). p.2343
Carbon assimilation characteristics of plants in oasis-desert ecotone and their response to CO2 enrichment
Su Peixi, Chen Huaishun, An Lizhe, Liu Xinmin
Science in China Series D: Earth Sciences. 2004 47(S1). p.39
Fossil soils, grasses, and carbon isotopes from Fort Ternan, Kenya: grassland or woodland?
Cerling T.E., Quade J., Ambrose S.H., Sikes N.E.
Journal of Human Evolution. 1991 21(4). p.295
Desert Plants (2010)
Su Peixi
The carbon and nitrogen isotope composition of Australian grasses in relation to climate
Murphy Brett P., Bowman David M. J. S.
Functional Ecology. 2009 23(6). p.1040
C4 Plant Biology (1999)
Caemmerer Susanne von, Furbank Robert T.
Welcome to the C4 World
Cerling Thure E., Ehleringer James R.
The Paleontological Society Papers. 2000 6 p.273
Using foliar δ13C from high‐Andean plants (Silala River basin) as a measure of potential evapotranspiration through water use efficiency
Suárez Francisco, Latorre Claudio, Mendoza Magdalena, Frugone Matías, Muñoz José F.
WIREs Water. 2024 11(1).
North-south patterning of millet agriculture on the Loess Plateau: Late Neolithic adaptations to water stress, NW China
Sheng Pengfei, Shang Xue, Sun Zhouyong, Yang Liping, Guo Xiaoning, Jones Martin K
The Holocene. 2018 28(10). p.1554
C4 Plant Biology (1999)
van der Merwe Nikolaas J., Tschauner Hartmut

Committee on Publication Ethics


Abstract Export Citation Get Permission