Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Stable oxygen isotope composition of plant tissue: a review

Margaret M. Barbour
+ Author Affiliations
- Author Affiliations

A Landcare Research, PO Box 40, Gerald St, Lincoln 7640, New Zealand.
Email: barbourm@landcareresearch.co.nz

B This review originates from the Outstanding Physiologist Award 2006 of the New Zealand Society of Plant Biologists received by the author

Functional Plant Biology 34(2) 83-94 https://doi.org/10.1071/FP06228
Submitted: 13 September 2006  Accepted: 20 November 2006   Published: 12 February 2007

Abstract

With the development of rapid measurement techniques, stable oxygen isotope analysis of plant tissue is poised to become an important tool in plant physiological, ecological, paleoclimatic and forensic studies. Recent advances in mechanistic understanding have led to the improvement of process-based models that accurately predict variability in the oxygen isotope composition of plant organic material (δ18Op). δ18Op has been shown to reflect the isotope composition of soil water, evaporative enrichment in transpiring leaves, and isotopic exchange between oxygen atoms in organic molecules and local water in the cells in which organic molecules are formed. This review presents current theoretical models describing the influences on δ18Op, using recently published experimental work to outline strengths and weaknesses in the models. The potential and realised applications of the technique are described.

Additional keywords: crop yield, leaf water enrichment, palaeoclimate, Péclet effect, stomatal conductance.


Acknowledgements

LA Cernusak, C Keitel and BR Helliker are thanked for valuable comments on an early draft of the manuscript, and MA Adams and an anonymous reviewer for their suggestions. Preparation of this review was funded by the Foundation for Science, Research and Technology, New Zealand.


References


Adams MA, Grierson PF (2001) Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. Plant Biology 3, 299–310.
CrossRef | open url image1

Adar EM , Gev I , Lipp J , Yakir D , Gat JR , Cohen Y (1995) Utilization of oxygen-18 and deuterium in stem flow for the identification of transpiration source: soil water versus ground water in sand dune terrain. In ‘Application of tracers in arid zone hydrology. International Association of Hydrological Sciences publication no. 232. Proceedings of the Vienna Symposium’. pp. 329–338. (IAHS Press: Wallingford)

Anderson WT, Bernasconi SM, McKenzie JA, Saurer M, Schweingruber F (2002) Model evaluation for reconstructing the oxygen isotopic composition in precipitation from tree ring cellulose over the last century. Chemical Geology 182, 121–137.
CrossRef | open url image1

Aucour AM, Hillaire-Marcel C, Bonnefille R (1996) Oxygen isotopes in cellulose from modern and Quaternary intert-tropical peat bogs: implications for paleohydrology. Chemical Geology 129, 341–359.
CrossRef | open url image1

Barbour MM (1999) A physiological study of organic oxygen isotope composition. PhD thesis, Australian National University, Canberra.

Barbour MM, Cernusak LA, Whitehead D, Griffin KL, Turnbull MH, Tissue DT, Farquhar GD (2005) Nocturnal stomatal conductance and implications for modelling δ18O of leaf-respired CO2 in temperate tree species. Functional Plant Biology 32, 1107–1121.
CrossRef | open url image1

Barbour MM, Farquhar GD (2000) Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell & Environment 23, 473–485.
CrossRef | open url image1

Barbour MM, Farquhar GD (2004) Do pathways of water movement and leaf anatomical dimensions allow development of gradients in H2 18O between veins and the sites of evaporation within leaves? Plant, Cell & Environment 27, 107–121.
CrossRef | open url image1

Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000a) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Australian Journal of Plant Physiology 27, 625–637. open url image1

Barbour MM, Schurr U, Henry BK, Wong SC, Farquhar GD (2000b) Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean: evidence in support of the Péclet effect. Plant Physiology 123, 671–679.
CrossRef | PubMed | open url image1

Barbour MM, Andrews TJ, Farquhar GD (2001) Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Australian Journal of Plant Physiology 28, 335–348. open url image1

Barbour MM, Walcroft AS, Farquhar GD (2002) Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell & Environment 25, 1483–1499.
CrossRef | open url image1

Barbour MM, Roden JS, Farquhar GD, Ehleringer JR (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia 138, 426–435.
CrossRef | PubMed | open url image1

Barbour MM , Cernusak LA , Farquhar GD (2005) Factors affecting the oxygen isotope ratio of plant organic material. In ‘Stable isotopes and biosphere-atmosphere interactions’. (Eds LB Flanagan, JR Ehleringer, DE Pataki) pp. 9–28. (Elsevier Academic Press: San Diego)

Bariac T, Gonzalez-Dunia J, Tardieu F, Tessier D, Mariotti A (1994a) Spatial variation of the isotopic composition of water (18O, 2H) in organs of aerophytic plants: 1. Assessment under laboratory conditions. Chemical Geology 115, 307–315.
CrossRef | open url image1

Bariac T, Gonzalez-Dunia J, Tardieu F, Tessier D, Mariotti A (1994b) Spatial variation of the isotopic composition of water (18O, 2H) in the soil–plant–atmosphere system, 2. Assessment under field conditions. Chemical Geology 115, 317–333.
CrossRef | open url image1

Bottinga Y, Craig H (1969) Oxygen isotope fractionation between CO2 and water, and the isotopic composition of marine atmospheric CO2. Earth and Planetary Science Letters 5, 285–295.
CrossRef | open url image1

Bowling DR, McDowell NG, Welker JM, Bond BJ, Law BE, Ehleringer JR (2003) Oxygen isotope content of CO2 in nocturnal ecosystem respiration. 2. Short-term dynamics of foliar and soil component fluxes in an old-growth ponderosa pine forest. Global Biogeochemical Cycles 17, 1124–1136.
CrossRef | open url image1

Brenninkmeijer CAM, van Geel B, Mook WG (1982) Variations in the D/H and 18O/16O ratios in cellulose extracted from a peat bog core. Earth and Planetary Science Letters 61, 283–290.
CrossRef | open url image1

Burk RL, Stuiver M (1981) Oxygen isotope ratios in trees reflect mean annual temperature and humidity. Science 211, 1417–1419.
CrossRef | open url image1

Cappa CD, Hendricks MB, DePaulo DJ, Cohen RC (2003) Isotopic fractionation of water during evaporation. Journal of Geophysical Research 108, 4525–4534.
CrossRef | open url image1

Cernusak LA, Pate JS, Farquhar GD (2002) Diurnal variation in the stable isotope composition of water and dry matter in fruiting Lupinus angustifolius under field conditions. Plant, Cell & Environment 25, 893–907.
CrossRef | open url image1

Cernusak LA, Arthur DJ, Pate JS, Farquhar GD (2003a) Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globulus. Plant Physiology 131, 1544–1554.
CrossRef | PubMed | open url image1

Cernusak LA, Wong SC, Farquhar GD (2003b) Oxygen isotope composition of phloem sap in relation to leaf water in Ricinus communis. Functional Plant Biology 30, 1059–1070.
CrossRef | open url image1

Cernusak LA, Pate JS, Farquhar GD (2004) Oxygen and carbon isotope composition of parasitic plants and their hosts in southwestern Australia. Oecologia 139, 199–213.
CrossRef | PubMed | open url image1

Cernusak LA, Farquhar GD, Pate JS (2005) Environmental and physiological controls over the oxygen and carbon isotope composition of the Tasmanian blue gum, Eucalyptus globulus. Tree Physiology 25, 129–146.
PubMed |
open url image1

Cook PG, O’Grady AP (2006) Determining soil and ground water use of vegetation from heat pulse, water potential and stable isotope data. Oecologia 148, 97–107.
CrossRef | PubMed | open url image1

Craig H (1961) Isotopic variations in meteoric waters. Science 133, 1702–1703.
CrossRef | open url image1

Craig H , Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In ‘Proceedings of a conference on stable isotopes in oceanographic studies and paleotemperatures’. (Ed E Tongiorgi) pp. 9–130. (Laboratory of Geology and Nuclear Science: Pisa)

Danis PA, Masson-Delmotte V, Stievenard M, Guillemin MT, Daux V, Naveau Ph, von Grafenstein U (2006) Reconstruction of past precipitation δ18O using tree-ring cellulose δ18O and δ13C: a calibration study near Lac d’Annecy, France. Earth and Planetary Science Letters 243, 439–448.
CrossRef | open url image1

Dawson TE, Ehleringer JR (1991) Streamside trees that do not use stream water. Nature 350, 335–337.
CrossRef | open url image1

Dawson TE , Pausch RC , Parker HM (1998) The role of hydrogen and oxygen stable isotopes in understanding water movement along the soil-plant-atmospheric continuum. In ‘Stable isotopes: integration of biological, ecological and geochemical processes’. (Ed H Griffiths) pp. 169–183. (Bios Scientific Publishers: Oxford)

DeNiro MJ, Cooper LW (1989) Post-photosynthetic modification of oxygen isotope ratios of carbohydrates in the potato: implications for paleoclimatic reconstruction based upon isotopic analysis of wood cellulose. Geochimica et Cosmochimica Acta 53, 2573–2580.
CrossRef | open url image1

DeNiro MJ, Sternberg LD, Marino BD, Druzik JR (1988) Relation between D/H and 18O/16O ratios in cellulose from linen and maize – implications for paleoclimatology and from sindology. Geochimica et Cosmochimica Acta 52, 2189–2196.
CrossRef | open url image1

Dongmann G, Nurnberg HE, Forstel H, Wagener K (1974) On the enrichment of H2 18O in the leaves of transpiring plants. Radiation and Environmental Biophysics 11, 41–52.
CrossRef | PubMed | open url image1

Drake PL, Franks PJ (2003) Water resource partitioning, stem hydraulic properties, and plant water use strategies in a seasonally dry riparian tropical rainforest. Oecologia 137, 321–329.
CrossRef | PubMed | open url image1

Edwards TWD, Fritz P (1986) Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: paleoclimatic implications for southern Ontario. Canadian Journal of Earth Sciences 22, 1720–1726. open url image1

Ehleringer JR, Casale JF, Lott MJ, Ford VL (2000) Tracing the geographical origin of cocaine. Nature 408, 311–312.
CrossRef | PubMed | open url image1

Ehleringer JR, Cooper DA, Lott MJ, Cook CS (1999) Geo-location of heroin and cocaine by stable isotope ratios. Forensic Science International 106, 27–35.
CrossRef | open url image1

Eiler JM, Schauble E (2004) 18O13C16O in earth’s atmosphere. Geochimica et Cosmochimica Acta 68, 4767–4777.
CrossRef | open url image1

Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochimica et Cosmochimica Acta 68, 3295–3305.
CrossRef | open url image1

Farquhar GD , Barbour MM , Henry BK (1998) Interpretation of oxygen isotope composition of leaf material. In ‘Stable isotopes: integration of biological, ecological and geochemical processes’. (Ed H Griffiths) pp. 27–61. (BIOS Scientific Publishers: Oxford)

Farquhar GD, Cernusak LA (2005) On the isotopic composition of leaf water in the non- steady state. Functional Plant Biology 32, 293–303.
CrossRef | open url image1

Farquhar GD , Condon AG , Masle J (1994) On the use of carbon and oxygen isotope composition and mineral ash content in breeding for improved rice production under favorable, irrigated conditions. In ‘Breaking the yield barrier’. (Ed KG Cassman) pp. 95–101. (International Rice Research Institute: Manila)

Farquhar GD, Gan KS (2003) On the progressive enrichment of the oxygen isotopic composition of water along a leaf. Plant, Cell & Environment 26, 1579–1597.
CrossRef | open url image1

Farquhar GD, Henry BK, Styles JM (1997) A rapid on-line technique for the determination of oxygen isotope composition of nitrogen containing organic compounds and water. Rapid Communications in Mass Spectrometry 11, 1554–1560.
CrossRef | open url image1

Farquhar GD , Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In ‘Stable isotopes and plant carbon–water relations’. (Eds JR Ehleringer, AE Hall, GD Farquhar) pp. 47–70. (Academic Press: San Diego)

Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 21, 221–234. open url image1

Flanagan LB, Comstock JP, Ehleringer JR (1991a) Comparison or modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiology 96, 588–596.
PubMed |
open url image1

Flanagan LB, Ehleringer JR (1991b) Effects of mild water stress and diurnal changes in temperature and humidity on the stable oxygen an hydrogen isotopic composition of leaf water in Cornus stolonifera L. Plant Physiology 97, 298–305.
PubMed |
open url image1

Flanagan LB, Marshall JD, Ehleringer JR (1993) Photosynthetic gas exchange and the stable isotope composition of leaf water: comparison of a xylem-tapping mistletoe and its host. Plant, Cell & Environment 16, 623–631.
CrossRef | open url image1

Flanagan LB, Phillips SL, Ehleringer JR, Lloyd J, Farquhar GD (1994) Effects of changes in leaf water oxygen isotopic composition on discriminations against C18O16O during photosynthesis. Australian Journal of Plant Physiology 21, 221–234. open url image1

Gan KS, Wong SC, Yong JWH, Farquhar GD (2002) 18O spatial patterns of vein xylem water, leaf water, and dry matter in cotton leaves. Plant Physiology 130, 1008–1021.
CrossRef | PubMed | open url image1

Gan KS, Wong SC, Yong JWH, Farquhar GD (2003) Evaluation of models of leaf water 18O enrichment using measurements of spatial patterns of vein xylem water, leaf water and dry matter in maize leaves. Plant, Cell & Environment 26, 1479–1495.
CrossRef | open url image1

Gessler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica L.). New Phytologist 50, 653–664.
CrossRef |
open url image1

Gessler A, Rennenberg H, Keitel C (2004) Stable isotope composition of organic compounds transported in the phloem of European beech – evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport. Plant Biology 6, 721–729.
CrossRef | PubMed | open url image1

Ghannoum O, von Caemmerer S, Conroy JP (2002) The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C4 grasses. Functional Plant Biology 29, 1337–1348.
CrossRef | open url image1

Gonfiantini R (1984) ‘Advisory group meeting on stable isotope reference samples for geochemical and hydrological investigations.’ (Isotope Atomic Energy Commission: Vienna)

Gonfiantini R , Gratziu S , Tongiorgi E (1965) Oxygen isotopic composition of water in leaves. In ‘Isotopes and radiation in soil plant nutrition studies. Technical Report Series No. 206’. pp. 405–410. (Isotope Atomic Energy Commission: Vienna)

Gray J, Thompson P (1977) Climatic information from 18O/16O analysis of cellulose, lignin and whole wood from tree rings. Nature 270, 708–709.
CrossRef | open url image1

Harwood KG, Gillon JS, Griffiths H, Broadmeadow MSJ (1998) Diurnal variation of Δ13CO2, ΔC18O16O, and evaporative site enrichment of δH2 18O in Piper aduncum under field condition in Trinidad. Plant, Cell & Environment 21, 269–283.
CrossRef | open url image1

Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco – an interpretation of 13C/12C variation in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant, Cell & Environment 27, 367–380.
CrossRef | open url image1

Helliker BR, Ehleringer JR (2000) Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses. Proceedings of the National Academy of Sciences USA 97, 7894–7898.
CrossRef | open url image1

Helliker BR, Ehleringer JR (2002a) Differential 18O enrichment of leaf cellulose in C3 versus C4 grasses. Functional Plant Biology 29, 435–442.
CrossRef | open url image1

Helliker BR, Ehleringer JR (2002b) Grass blades as tree-rings: environmentally induced changes in the oxygen isotope ratio of cellulose along the length of grass blades. New Phytologist 155, 417–424.
CrossRef | open url image1

Helliker BR, Griffiths H (2007) Towards a plant-based proxy for the isotope ratio of atmospheric water vapour. Global Change Biology in press , open url image1

Helliker BR, Roden JS, Cook C, Ehleringer JR (2002) A rapid and precise method for sampling and determining the oxygen isotope ratio of atmospheric water vapour. Rapid Communications in Mass Spectrometry 16, 929–932.
CrossRef | PubMed | open url image1

Hill SA, Waterhouse JS, Field EM, Switsur VR, apRees T (1995) Rapid recycling of triose phosphates in oak stem tissue. Plant, Cell & Environment 18, 931–936.
CrossRef | open url image1

Hong YT, Jiang HB, Liu TS, Zhou LP, Berr J, Li HD, Leng XT, Hong B, Qin XG (2000) Response of climate to solar forcing in a 6000-years δ18O time series of Chinese peat cellulose. The Holocene 10, 1–7.
CrossRef | open url image1

Houerou G, Kelly SD, Dennis MJ (1999) Determination of the oxygen-18/oxygen-16 isotope ratios of sugar, citric acid and water from single strength orange juice. Rapid Communications in Mass Spectrometry 13, 1257–1262.
CrossRef | PubMed | open url image1

Jäggi M, Saurer M, Fuhrer J, Siegwolf R (2003) Seasonality of δ18O in needles and wood of Picea abies. New Phytologist 158, 51–59.
CrossRef | open url image1

Kays WM (1966) ‘Convective heat and mass transfer.’ (McGraw-Hill: New York)

Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Geßler A (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant, Cell & Environment 26, 1157–1168.
CrossRef | open url image1

Keitel C, Matzarakis A, Rennenberg H, Gessler A (2006) Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant, Cell & Environment 29, 1492–1507.
CrossRef | PubMed | open url image1

Kreuzer-Martin HW, Chesson LA, Lott MJ, Dorigan JV, Ehleringer JR (2004) Stable isotope ratios as a tool in microbial forensics –Part 1. Microbial isotopic composition as a function of growth medium. Journal of Forensic Science , 954–960. open url image1

Kreuzer-Martin HW, Lott MJ, Dorigan J, Ehleringer JR (2003) Microbe forensics: oxygen and hydrogen stable isotope ratios in Bacillus subtilis cells and spores. Proceedings of the National Academy of Sciences USA 100, 815–819.
CrossRef | open url image1

Lai CT, Ehleringer JR, Bond BJ, Paw UKT (2006) Contributions of evaporation, isotope non-steady-state transpiration and atmospheric mixing on the δ18O of water vapour in Pacific Northwest coniferous forests. Plant, Cell & Environment 29, 77–94.
CrossRef | PubMed | open url image1

Lee X, Sargent S, Smith R, Tanner B (2005) In situ measurement of the water vapour 18O/16O isotope ratio for atmospheric and ecological applications. Journal of Atmospheric and Oceanic Technology 22, 555–565.
CrossRef | open url image1

Libby LM, Pandolfi LJ, Payton PH, Marshall J, Becker B, Giertz-Sienbenlist V (1976) Isotopic tree thermometers. Nature 261, 284–288.
CrossRef | open url image1

Lin G , Sternberg L (1992) Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. In ‘Stable isotopes and plant carbon–water relations’. (Eds JR Ehleringer, AE Hall, GD Farquhar) pp. 497–510. (Academic Press: San Diego)

Loader NJ, Switsur VR, Field EM (1995) High-resolution stable isotope analysis of tree rings: implications of ‘microdendroclimatology’ for palaeoenvironmental research. The Holocene 5, 457–460. open url image1

Loader NJ, Hemming DL (2004) The stable isotope analysis of pollen as an indicator of terrestrial palaeoenvironmental change: a review of progress and recent developments. Quaternary Science Reviews 23, 893–900.
CrossRef | open url image1

Lu ZM, Radin JW, Turcotte EL, Percy R, Zeiger E (1994) High yields in advanced lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiologia Plantarum 92, 266–272.
CrossRef | open url image1

Luo YH, Sternberg LSL (1992) Hydrogen and oxygen isotopic fractionation during heterotrophic cellulose synthesis. Journal of Experimental Botany 43, 47–50.
CrossRef |
open url image1

McCarroll D, Loader NJ (2004) Stable isotope in tree rings. Quaternary Science Reviews 23, 771–801.
CrossRef | open url image1

Ménot-Combes G, Burns SJ, Leuenberger M (2002) Variations of 18O/16O in plants from temperate peat bogs (Switzerland): implications for paleoclimatic studies. Earth and Planetary Science Letters 202, 419–434.
CrossRef | open url image1

Model P, Ponticorvo L, Rittenberg D (1968) Catalysis of an oxygen-exchange reaction of fructose-1,6-diphosphate and fructose-1-phosphate with water by rabbit muscle aldolase. Biochemistry 7, 1339–1347.
CrossRef | PubMed | open url image1

Ogée J, Cuntz M, Peylin P, Bariac T (2007) Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves. Plant, Cell & Environment in press , open url image1

Pate J, Arthur D (1998) δ13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucaltyptus globulus. Oecologia 117, 301–311.
CrossRef | open url image1

Pate J, Shedley E, Arthur D, Adams M (1998) Spatial and temporal variationa in phloem sap composition of plantation-grown Eucalyptus globulus. Oecologia 117, 312–322.
CrossRef | open url image1

Pendall E, Williams DG, Leavitt SW (2005) Comparison of measured and modeled variations in piñon pine leaf water isotopic enrichment across a summer moisture gradient. Oecologia 145, 605–618.
CrossRef | PubMed | open url image1

Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multidecade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth and Planetary Science Letters 218, 301–316.
CrossRef | open url image1

Poussart PF, Schrag DP (2005) Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth and Planetary Science Letters 235, 752–765.
CrossRef | open url image1

Querejeta JI, Allen MF, Caravaca F, Roldán A (2006) Differential modulation of host plant δ13C and δ18O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment. New Phytologist 169, 379–387.
CrossRef | PubMed | open url image1

Ramesh R, Bhattacharya SK, Gopalan K (1986) Climatic correlations in the stable isotope records of silver fir (Abies pindrow) trees from Kashmir, India. Earth and Planetary Science Letters 79, 66–74.
CrossRef | open url image1

Roden JS, Ehleringer JR (1999) Hydrogen and oxygen isotope ratios of tree-ring cellulose for riparian trees grown long-term under hydroponically controlled environments. Oecologia 121, 467–477.
CrossRef | open url image1

Roden JS, Ehleringer JR (2000) Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees. Oecologia 123, 481–489.
CrossRef | open url image1

Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochimica et Cosmochimica Acta 64, 21–35.
CrossRef | open url image1

Samuel D, Silver BL (1965) Oxygen isotope exchange reactions of organic compounds. Advances in Physical Organic Chemistry 3, 1885–1895. open url image1

Saurer M, Aellen K, Siegwolf R (1997) Correlating δ13C and δ18O in cellulose of trees. Plant, Cell & Environment 20, 1543–1550.
CrossRef | open url image1

Sayre KD, Rajaram S, Fischer RA (1997) Yield potential progress in short bread wheats in Northwest Mexico. Crop Science 37, 36–42. open url image1

Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125, 350–357.
CrossRef | open url image1

Schmidt H-L, Werner RA, Roßmann A (2001) 18O pattern and biosynthesis of natural plant products. Phytochemistry 58, 9–32.
CrossRef | PubMed | open url image1

Seibt U, Wingate L, Berry JA, Lloyd J (2006) Non-steady-state effects in diurnal 18O discrimination by Picea sitchensis branches in the field. Plant, Cell & Environment 29, 928–939.
CrossRef | PubMed | open url image1

Sheshshayee MS, Bindumadhava H, Ramesh R, Prasad TG, Lakshminarayana MR, Udayakumar M (2005) Oxygen isotope enrichment (Δ18O) as a measure of time- averaged transpiration rate. Journal of Experimental Botany 56, 3033–3039.
CrossRef | PubMed | open url image1

Shu Y, Feng X, Gazis C, Anderson D, Faiia AM, Tang K, Ettl GJ (2005) Relative humidity recorded in tree rings: a study along a precipitation gradient in the Olympic Mountains, Washington, USA. Geochimica et Cosmochimica Acta 69, 791–799.
CrossRef | open url image1

da Silveira L,, Sternberg L, Mulkey SS, Wright SJ (1989) Oxygen isotope ratio stratification in a tropical moist forest. Oecologia 81, 51–56.
CrossRef | open url image1

Sternberg L , Anderson WT, Morrison K (2003) Separating soil and leaf water 18O isotopic signals in plant stem cellulose. Geochimica et Cosmochimica Acta 67, 2561–2566.
CrossRef | open url image1

Sternberg L, DeNiro M (1983) Biogeochemical implications of the isotopic equilibrium fractionation factor between oxygen atoms of acetone and water. Geochimica et Cosmochimica Acta 47, 2271–2274. open url image1

Sternberg L, DeNiro M, Savidge R (1986) Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis. Plant Physiology 82, 423–427.
PubMed |
open url image1

Sternberg L, Pinzon MC, Anderson WT, Jahren AH (2006) Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects. Plant, Cell & Environment 29, 1881–1889.
CrossRef | PubMed | open url image1

Switsur VR , Waterhouse JS (1998) Stable isotopes in tree ring cellulose. In ‘Stable isotopes: integration of biological, ecological and geochemical processes’. (Ed H Griffiths) pp. 303–321. (BIOS Scientific Publishers: Oxford)

Tcherkez G, Farquhar GD (2005) Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Functional Plant Biology 32, 277–291.
CrossRef | open url image1

Terwilliger VJ, Betancourt JL, Leavitt SW, Van de Water PK (2002) Leaf cellulose δD and δ18O trends with elevation differ in direction among co-occurring, semiarid plant species. Geochimica et Cosmochimica Acta 66, 3887–3900.
CrossRef | open url image1

Verheyden A, Helle G, Schleser GH, Dehairs F, Beeckman H, Koedam N (2004) Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant, Cell & Environment 27, 1525–1536.
CrossRef | open url image1

Walcroft AS, Silvester WB, Whitehead D, Kelliher FM (1997) Seasonal changes in stable carbon isotope ratios within annual rings of Pinus radiata reflect environmental regulation of growth processes. Australian Journal of Plant Physiology 24, 57–68. open url image1

Walker CD, Lance RC (1991) The fractionation of 2H and 18O in leaf water of barley. Australian Journal of Plant Physiology 18, 411–425. open url image1

Wang XF, Yakir D, Avishai M (1998) Non-climatic variations in the oxygen isotopic compositions of plants. Global Change Biology 4, 835–849.
CrossRef | open url image1

Wang XF, Yakir D (1995) Temporal and spatial variation in the oxygen-18 content of leaf water in different plant species. Plant, Cell & Environment 18, 1377–1385.
CrossRef | open url image1

Webb EA, Longstaffe FJ (2006) Identifying the δ18O signature of precipitation in grass cellulose and phytoliths: refining the paleoclimate model. Geochimica et Cosmochimica Acta 70, 2417–2426.
CrossRef | open url image1

Weiguo L, Xiahong F, Yu L, Qingle Z, Zhisheng A (2004) δ18O values of tree rings as a proxy of monsoon precipitation in arid Northwest China. Chemical Geology 206, 73–80.
CrossRef | open url image1

Welker JM, Rayback S, Henry GHR (2005) Arctic and North Atlantic Oscillation phase changes are recorded in the isotopes (δ18O and δ13C) of Cassiope tetragona plants. Global Change Biology 11, 997–1002.
CrossRef | open url image1

Wershaw RL , Friedman I , Heller SJ , Frank PA (1966) Hydrogen isotope fractionation of water passing through trees. In ‘Advances in organic geochemistry’. (Ed GD Hobson) pp. 55–67. (Pergamon Press: Oxford)

Williams DG, Coltrain JB, Lott M, English NB, Ehleringer JR (2005) Oxygen isotope in cellulose identify source water for archaeological maize in the American Southwest. Journal of Archaeological Science 32, 931–939.
CrossRef | open url image1

Wilson AT, Grinsted MJ (1977) 12C/13C in cellulose and lignin as palaeothermometers. Nature 265, 133–135.
CrossRef | open url image1

Wright WE, Leavitt SW (2006) Needle cell elongation and maturation timing derived from pine needle cellulose δ18O. Plant, Cell & Environment 29, 1–4.
CrossRef | PubMed | open url image1

Yakir D, DeNiro M, Gat J (1990) Natural deuterium and oxygen-18 enrichment in leaf water of cotton plants grown under wet and dry conditions: evidence for water compartmentation and its dynamics. Plant, Cell & Environment 13, 49–56.
CrossRef | open url image1

Yakir D, DeNiro MJ, Rundel PW (1989) Isotopic inhomogeneity of leaf water: evidence and implications for the use of isotopic signals transduced by plants. Geochimica et Cosmochimica Acta 53, 2769–2773.
CrossRef | open url image1

Yakir D, Israeli Y (1995) Reduced solar irradiance effects on net primary productivity (NPP) and the δ13C and δ18O values in plantations of Musa sp. musaceae. Geochimica et Cosmochimica Acta 59, 2149–2151.
CrossRef | open url image1

Zundel G, Miekeley W, Grisi BM, Förstel H (1978) The H218O enrichment in the leaf water of tropic trees: comparison of species from the tropical rain forest and the semi-arid region of Brazil. Radiation and Environmental Biophysics 15, 203–212.
CrossRef | PubMed | open url image1








Rent Article (via Deepdyve) Export Citation Cited By (231)