Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Multiple effects of the starch synthase II mutation in developing wheat endosperm

Behjat Kosar-Hashemi A B , Zhongyi Li A B , Oscar Larroque B , Ahmed Regina A B , Makoto Yamamori C , Matthew K. Morell A B and Sadequr Rahman A B D
+ Author Affiliations
- Author Affiliations

A CSIRO Food Futures National Research Flagship, PO Box 93, North Ryde, NSW 1670, Australia.

B CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.

C National Agriculture Research Centre for Tohoku Region, Morioka, Iwate 020-0198, Japan.

D Corresponding author. Email: sadequr.rahman@csiro.au

Functional Plant Biology 34(5) 431-438 https://doi.org/10.1071/FP06288
Submitted: 6 November 2006  Accepted: 27 March 2007   Published: 17 May 2007

Abstract

A line of wheat (Triticum aestivum L.), sgp-1, that does not express starch synthase II (SSII, also known as SGP-1) has previously been reported. In this study, F1 derived doubled haploid lines with homozygous wild type or mutant alleles for SGP-1 genes were identified from a cross between the original mutant and a wild type Australian cultivar. Analysis of the starch granules showed that in the mutant lines they are markedly distorted from 15 days postanthesis during grain development. Starch branching patterns showed an increase in the proportion of short chains (DP 6–10) at an earlier stage, but this increase became much more pronounced at 15 days postanthesis and persisted until maturity. There was also a consistent and drastic reduction throughout seed development in the relative amounts of starch branching enzyme II (SBEII, comprising SBEIIa and SBEIIb) and starch synthase I (SSI) bound to the starch granules. In the soluble phase, however, there was relatively little change in the amount of SBEIIb, SBEIIa or SSI protein. Therefore loss of SSII specifically leads to the loss of SBEIIb, SBEIIa and SSI protein in the granule-bound phase and the effect of this mutation is clearly manifest from the mid-stage of endosperm development in wheat.

Additional keywords: SGP-1 null mutant, starch branching enzymes, starch synthases, soluble and granule-bound enzymes.


References


Ainsworth C, Clark J, Balsdon J (1993) Expression, organization and structure of the genes encoding the Waxy protein (granule-bound starch synthase) in wheat. Plant Molecular Biology 22, 67–82.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ball S, Guan HP, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J (1996) From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86, 349–352.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99.
Crossref | GoogleScholarGoogle Scholar | open url image1

Craig J, Lloyd J, Tomlinson K, Barber L, Edwards A, Wang TL, Martin C, Hedley C, Smith AM (1998) Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. The Plant Cell 10, 413–426.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

D’Appolonia BL , Gillies KA , Osman EM , Pomeranz Y (1978) Carbohydrates. In ‘Wheat: chemistry and technology’. (Ed. Y Pomeranz) pp. 301–392. (American Association of Cereal Chemists, St. Paul)

Denyer K, Hylton CM, Jenner CF, Smith AM (1995) Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta 196, 256–265.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dian W, Jiang H, Wu P (2005) Evolution and expression analysis of starch synthase III and IV in rice. Journal of Experimental Botany 56, 623–632.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Echt CS, Schwartz D (1981) Evidence for the inclusion of controlling elements within the structural gene at the Waxy locus in maize. Genetics 99, 275–284.
PubMed |
open url image1

Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiology 140, 1070–1084.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gao M, Wanat J, Stinard PS, James MG, Myers AM (1998) Characterization of dull1, a maize gene coding for a novel starch synthase. The Plant Cell 10, 399–412.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hirose T, Terao T (2004) A comprehensive expression analysis of the starch synthase family in rice (Oryza sativa L.). Planta 220, 9–16.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kosar-Hashemi B, Irwin JA, Higgins J, Rahman S, Morell MK (2006) Isolation, identification and characterisation of starch-interacting proteins by 2-D affinity electrophoresis. Electrophoresis 27, 1832–1839.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li Z, Chu X, Mouille G, Yan L, Kosar-Hashemi B , et al. (1999a) The localization and expression of the class II starch synthases of wheat. Plant Physiology 120, 1147–1155.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li Z, Rahman S, Kosar-Hashemi B, Mouille G, Appels R, Morell MK (1999b) Cloning and characterization of genes encoding wheat soluble starch synthase I. Theoretical and Applied Genetics 98, 1208–1216.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li Z, Mouille G, Kosar-Hashemi B, Rahman S, Clarke B, Gale KR, Appels R, Morell MK (2000) The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiology 123, 613–624.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lloyd JR, Landschutze V, Kossmann J (1999) Simultaneous antisense inhibition of two starch-synthase isofoms in potato tubers leads to accumulation of grossly modified amylopectin.  Biochemical Journal 338, 515–521.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Martin C, Smith AM (1995) Starch biosynthesis. The Plant Cell 7, 971–985.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Morell MK, Blennow A, Kosar-Hashemi B, Samuel MS (1997) Differential expression and properties of starch branching isoforms in developing wheat endosperm. Plant Physiology 113, 201–208.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Morell MK, Samuel MS, O’Shea MG (1998) Analysis of starch structure using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 19, 2603–2611.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Morell MK, Kosar-Hashemi B, Cmiel M, Samuel MS, Chandler P, Rahman S, Buleon A, Batey IL, Li Z (2003) Barley sex6 mutants lack starch synthase IIA activity and contain a starch with novel properties. Plant Journal 34, 173–185.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nakamura Y, Umemoto T, Takahata Y, Komae K, Amano E, Satoh H (1996) Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm. Possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Physiologia Plantarum 97, 491–498.
Crossref | GoogleScholarGoogle Scholar | open url image1

O’Shea MG, Samuel MS, Konik CM, Morell MK (1998) Fluorophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: efficiency of labelling and high-resolution separation. Carbohydrate Research 307, 1–12.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rahman S, Kosar-Hashemi B, Samuel MS, Hill A, Abbott DC, Skerritt JH, Preiss J, Appels R, Morell MK (1995) The major proteins of wheat endosperm starch granules. Australian Journal of Plant Physiology 22, 793–803. open url image1

Rahman S, Regina A, Li Z, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abrahams S, Morell MK (2001) Comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from wheat D genome donor Aegilops tauschii. Plant Physiology 125, 1314–1324.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Regina A, Kosar-Hashemi B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp PJ, Morell MK, Rahman S (2005) Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta 222, 899–909.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell MK (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences USA 103, 3546–3551.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shannon JC , Garwood DL (1984) Genetics and physiology of starch development. In ‘Starch: chemistry and technology’. 2nd edn. (Eds RL Whistler, JN Bemiller, EF Paschall) pp. 26–86. (Academic Press, Orlando)

Shimbata T, Nakamura T, Vrinten P, Saito M, Yonemaru J, Seto Y, Yasuda H (2005) Mutation in wheat starch synthase II genes and PCR-based selection of a SGP-1 null line. Theoretical and Applied Genetics 111, 1072–1079.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein–protein interactions. The Plant Cell 16, 694–708.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Umemoto T, Aoki N (2005) single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Functional Plant Biology 32, 763–768.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vos-Scheperkeuter GH, Boer W, Visser RGF, Feenstra WJ, Witholt B (1986) Identification of granule-bound starch synthase in potato tubers. Plant Physiology 82, 411–416.
PubMed |
open url image1

Yamamori M, Endo TR (1996) Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theoretical and Applied Genetics 93, 275–281.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yamamori M, Fujita N, Hayakawa K, Matsuki J, Yasui T (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theoretical and Applied Genetics 101, 21–29.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yamamori M, Quynh NT (2000) Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theoretical and Applied Genetics 100, 32–38.
Crossref | GoogleScholarGoogle Scholar | open url image1