Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Brachypodium distachyon: a model species for aluminium tolerance in Poaceae

Roberto Contreras A , Ana M. Figueiras A , Francisco J. Gallego A and Cesar Benito A B

A Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040-Madrid, Spain.

B Corresponding author. Email: cebe8183@bio.ucm.es

Functional Plant Biology 41(12) 1270-1283 http://dx.doi.org/10.1071/FP13362
Submitted: 18 December 2013  Accepted: 31 May 2014   Published: 29 July 2014

Abstract

Aluminium (Al) toxicity is the main abiotic stress limiting plant productivity in acidic soils. Studies on Al tolerance have been conducted in Poaceae but their genomes are very complex. Fifty-nine diploid lines (2n = 10) of Brachypodium distachyon (L.) P. Beauv. and 37 allotetraploid samples (2n = 30) of Brachypodium hybridum Catalán, Joch. Müll., Hasterok & Jenkins sp. nov. were used to evaluate their tolerance to different Al concentrations. B. distachyon is Al-sensitive compared with oat, rice and rye. The diploid lines (except ABR8) were sensitive like barley and Arabidopsis; however, 10 allotetraploid samples were Al-tolerant. Four different root-staining methods were used to detect Al accumulation, cell death, lipid peroxidation and H2O2 production in diploid and allotetraploid plants. The roots treated with Al showed more intense staining in sensitive than tolerant lines. Also, without any staining, the Al treated roots of sensitive plants appear darker than roots from tolerant ones. The study concerning to the organic acids exudation shows that the exudation of citrate and malate was induced only in the roots from tolerant diploid line (ABR8) and tolerant allotetraploid samples. In contrast, the mRNA expression changes of several candidate genes for Al-activated transporters belonging to the ALMT and MATE families were analysed by quantitative PCR (qRT–PCR). The data obtained indicate that the transcripts from BdALMT1, BdMATE1 and BdMATE2 were present mainly in roots and, moreover, that the BdALMT1 transcript is present in higher amounts in the tolerant ABR8 than in the sensitive ABR1 plants indicating that this gene may be involved in Al tolerance. Finally, an insertion was detected in the promoter region of the BdALMT1 of tolerant diploid and allotetraploid plants.

Additional keywords: aluminium tolerance, candidate genes, model plant, Poaceae.


References

Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminum induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicology and Environmental Safety 70, 300–310.
Aluminum induced oxidative stress and DNA damage in root cells of Allium cepa L.CrossRef | 1:CAS:528:DC%2BD1cXkvFCgsL4%3D&md5=e69109f7e0c59c4dbc8dc1670a512413CAS | open url image1

Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Canadian Journal of Genetics and Cytology 26, 701–705.

Camargo CEO, Felício JC (1984) Tolerância de cultivares de trigo, triticale e centeio em diferentes níveis de alumínio em solução nutritiva. Bragantia 43, 9–16.
Tolerância de cultivares de trigo, triticale e centeio em diferentes níveis de alumínio em solução nutritiva.CrossRef | 1:CAS:528:DyaL28XjtFyrsQ%3D%3D&md5=ea8bb80f72ae9b36edfe56833fc51d51CAS | open url image1

Cançado GMA, Loguercio LL, Martins PR, Parentoni SN, Paiva E, Borém A, Lopes MA (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theoretical and Applied Genetics 99, 747–754.
Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.).CrossRef | open url image1

Catalán P, Müller J, Hasterok R, Jenkins G, Mur LAJ, Langdon T, Betekhtin A, Siwinska D, Pimentel M, López-Álvarez D (2012) Evolution and taxonomic split of the model grass Brachypodium distachyon. Annals of Botany 109, 385–405.
Evolution and taxonomic split of the model grass Brachypodium distachyon.CrossRef | 22213013PubMed | open url image1

Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179, 669–682.
An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.).CrossRef | 1:CAS:528:DC%2BD1cXnsl2qtLk%3D&md5=6964afb7f3e984a7bda16af28634107cCAS | 18493079PubMed | open url image1

Dagley S (1974) Citrate: UV spectrophotometer determination. In ‘Methods of enzymatic analysis’. (Eds HU Bergmeyer, K Gawehn) pp. 1562–1565. (Academic Press: New York)

Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiology 107, 315–321.

Delhaize E, Ryan PR, Randall PJ (1993) Aluminium tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic-acid from root apices. Plant Physiology 103, 695–702.

Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America 101, 15 249–15 254.
Engineering high-level aluminum tolerance in barley with the ALMT1 gene.CrossRef | 1:CAS:528:DC%2BD2cXpsVSgurc%3D&md5=a54a89092b984c3682557b5869f9d6b1CAS | open url image1

Delhaize E, James RA, Ryan PR (2012) Aluminum tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytologist 195, 609–619.
Aluminum tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil.CrossRef | 1:CAS:528:DC%2BC38XpvVeisrY%3D&md5=2e6a2b5a1cfd3ec85e61fa4b5ddb2935CAS | 22642366PubMed | open url image1

Devi SR, Yamamoto Y, Matsumoto H (2003) An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells. Journal of Inorganic Biochemistry 97, 59–68.
An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells.CrossRef | 1:CAS:528:DC%2BD3sXnsVKlt78%3D&md5=3f31960f687b75a3a52a921c7144f539CAS | 14507461PubMed | open url image1

Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR, Kochian LV (2010) Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiology 153, 1678–1691.
Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms.CrossRef | 1:CAS:528:DC%2BC3cXhtVCrsr%2FL&md5=b287797ea84132df1e4124c5e5cbb22eCAS | 20538888PubMed | open url image1

Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics 114, 249–260.
Candidate gene identification of an aluminum-activated organic acid transporter gene at the alt4 locus for aluminum tolerance in rye (Secale cereale L.).CrossRef | 1:CAS:528:DC%2BD28XhtlWntb3N&md5=07475948dc316ea040538d379d1dc8e6CAS | 17063338PubMed | open url image1

Foy CD (1988) Plant adaptation to acid aluminum-toxic soils. Communications in Soil Science and Plant Analysis 19, 959–987.
Plant adaptation to acid aluminum-toxic soils.CrossRef | 1:CAS:528:DyaL1cXltV2gsLw%3D&md5=0795d9c68a8b0f77a84c72a269cdf06dCAS | open url image1

Foy CD, Lee EH, Coradetti CA, Taylor GJ (1990) Organic acids related to differential aluminum tolerance in wheat (Triticum aestivum) cultivars. In ‘Plant nutrition – physiology and applications’. (Ed. Zn ML van Beusichem) pp. 381–389. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H, Sato K, Nakazono M, Maa JF (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nature Communications 3, 713–721.
Acquisition of aluminium tolerance by modification of a single gene in barley.CrossRef | 22395604PubMed | open url image1

Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant & Cell Physiology 48, 1081–1091.
An aluminum-activated citrate transporter in barley.CrossRef | 1:CAS:528:DC%2BD2sXhtVKlsrrK&md5=ec0a314ca2ddf9f83cf0c62904c8d168CAS | open url image1

Gallego FJ, Benito C (1997) Genetic control of aluminium tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics 95, 393–399.
Genetic control of aluminium tolerance in rye (Secale cereale L.).CrossRef | 1:CAS:528:DyaK2sXmtFGqtLw%3D&md5=ee835ba0b71cfbdae43e1ec8eab6bb98CAS | open url image1

Garvin DF, Gu Y-Q, Hasterok R, Hazen SP, Jenkins G, Mockler TC, Mur LAJ, Vogel JP (2008) Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Science 48, S69–S84.
Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research.CrossRef | open url image1

Gutmann I, Wahlefeld AW (1974). L-malate: determination with malate dehydrogenase and NAD. In ‘Methods of enzymatic analysis’. (Eds HU Bergmeyer, K Gawehn) pp. 1585–1589. (Academic Press: New York)

Hoekenga OA, Maron LG, Piñeros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 9738–9743.
AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis.CrossRef | 1:CAS:528:DC%2BD28XmsVOntrY%3D&md5=f3ffffb2a43794dda2b640deb9344185CAS | 16740662PubMed | open url image1

Horst WJ, Asher CJ, Cakmak I, Szulkiewica P, Wissemeier AH (1992) Short-term responses on soybean roots to aluminum. Journal of Plant Physiology 140, 174–178.
Short-term responses on soybean roots to aluminum.CrossRef | 1:CAS:528:DyaK38Xks1Cms7s%3D&md5=2ea4c3a3b36b93d907a0c5bb5b5da68aCAS | open url image1

Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proceedings of the National Academy of Sciences of the United States of America 104, 9900–9905.
Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance.CrossRef | 17535918PubMed | open url image1

Jones DL, Blacaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminum uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant, Cell & Environment 29, 1309–1318.
Spatial coordination of aluminum uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots.CrossRef | 1:CAS:528:DC%2BD28XnsVGjsr0%3D&md5=ebb319693ecc3d906df7ff480fc9b513CAS | open url image1

Kim BY, Baier AC, Somers DJ, Gustafson JP (2001) Aluminum tolerance in triticale, wheat, and rye. Euphytica 120, 329–337.
Aluminum tolerance in triticale, wheat, and rye.CrossRef | 1:CAS:528:DC%2BD3MXotFWmtb4%3D&md5=38012b7287210fdf0d7d65a22028bfe5CAS | open url image1

Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil 274, 175–195.
The physiology, genetics and molecular biology of plant aluminum resistance and toxicity.CrossRef | 1:CAS:528:DC%2BD2MXhtVWiurfN&md5=712781cafaa0221079c6e6e176e14311CAS | open url image1

Larsen PB, Tai CY, Kochian LV, Howell SH (1996) Arabidopsis mutants with increased sensitivity to aluminum. Plant Physiology 110, 743–751.
Arabidopsis mutants with increased sensitivity to aluminum.CrossRef | 1:CAS:528:DyaK28Xhs1Gis7s%3D&md5=b831f0908f6059614a93f4396d98b62aCAS | 8819866PubMed | open url image1

Li XF, Ma JF, Matsumoto HPC (2000) Pattern of aluminum induced secretion of organic acids differs between rye and wheat. Plant Physiology 123, 1537–1544.
Pattern of aluminum induced secretion of organic acids differs between rye and wheat.CrossRef | 1:CAS:528:DC%2BD3cXmtVegsro%3D&md5=fffc4ef70c86b6ea1dee335bfc19d497CAS | 10938369PubMed | open url image1

Lisch D (2013) How important are the transposons for plant evolution? Nature Reviews Genetics 14, 49–61.
How important are the transposons for plant evolution?CrossRef | 1:CAS:528:DC%2BC38XhvVCht7%2FL&md5=f4ad89a848836cd0108995aa574540f2CAS | 23247435PubMed | open url image1

Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal 57, 389–399.
Aluminum activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.CrossRef | 1:CAS:528:DC%2BD1MXit1KitLk%3D&md5=c3cf2cb76020de3db4943fd65a385d1bCAS | 18826429PubMed | open url image1

Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a mini review. Journal of Inorganic Biochemistry 97, 46–51.
Recent progress in the research of external Al detoxification in higher plants: a mini review.CrossRef | 1:CAS:528:DC%2BD3sXnsVKltrc%3D&md5=90ab94b8e8b57f2a3b953f9982c3feeaCAS | 14507459PubMed | open url image1

Ma JF, Zheng SJ, Hiradate S, Matsumoto H (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
Detoxifying aluminum with buckwheat.CrossRef | open url image1

Ma JF, Taketa S, Yang ZM (2000) Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiology 122, 687–694.
Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale.CrossRef | 1:CAS:528:DC%2BD3cXktFSqsbw%3D&md5=48da8411934e1462860aacf2642bdb02CAS | 10712531PubMed | open url image1

Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics 39, 1156–1161.
A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum.CrossRef | 1:CAS:528:DC%2BD2sXps12gtL8%3D&md5=b764804bf30e58158e396b9883f839efCAS | 17721535PubMed | open url image1

Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman T, Raskin E, Mitchell-Olds T (2012) Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist 193, 797–805.
Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae).CrossRef | 22150799PubMed | open url image1

Maron LG, Piñeros MA, Guimaraes CT, Magalhaes J, Pleiman JK, Mao C, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporter potentially underlie two major aluminum tolerance QTLs in maize. The Plant Journal 61, 728–740.
Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporter potentially underlie two major aluminum tolerance QTLs in maize.CrossRef | 1:CAS:528:DC%2BC3cXjsFaksbo%3D&md5=eb545ffbd5fe44a651ebd316eef56969CAS | 20003133PubMed | open url image1

Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminium tolerance in snapbeans – root exudation of citric-acid. Plant Physiology 96, 737–743.
Mechanism of aluminium tolerance in snapbeans – root exudation of citric-acid.CrossRef | 1:CAS:528:DyaK3MXltVyitro%3D&md5=bb460584065b30c5580682afbac73ecfCAS | 16668249PubMed | open url image1

Mugwira LM, Elgawhary SM, Patel KI (1976) Differential tolerances of triticale, wheat, rye, and barley to aluminum in nutrient solution. Agronomy Journal 68, 782–787.
Differential tolerances of triticale, wheat, rye, and barley to aluminum in nutrient solution.CrossRef | 1:CAS:528:DyaE28XlvFWgu7s%3D&md5=108eebb35a9c413fc3401c3dd9bdb6efCAS | open url image1

Mur LAJ, Allainguillaume J, Catalán P, Hasterok R, Jenkins G, Lesniewska K, Thomas I, Vogel J (2011) Exploiting the Brachypodium tool box in cereal and grass research. New Phytologist 191, 334–347.
Exploiting the Brachypodium tool box in cereal and grass research.CrossRef | open url image1

Oliveira PH, Federizzi LC, Kothe Milach SC, Gotuzzo C, Sawasato JT (2005) Inheritance in oat (Avena sativa L.) of tolerance to soil aluminum toxicity. Crop Breeding and Applied Biotechnology 5, 302–309.
Inheritance in oat (Avena sativa L.) of tolerance to soil aluminum toxicity.CrossRef | open url image1

Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196, 788–795.
Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).CrossRef | 1:CAS:528:DyaK2MXnt1aqu7s%3D&md5=59d1808012fabb3c0f45bd49f1153267CAS | open url image1

Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance in wheat by hematoxylin staining of seedling roots. Crop Science 18, 823–827.
Visual detection of aluminum tolerance in wheat by hematoxylin staining of seedling roots.CrossRef | 1:CAS:528:DyaE1MXjsl2mtQ%3D%3D&md5=6c7550ac55561abae1239f985b695da6CAS | open url image1

Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48, 781–791.
Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.).CrossRef | 1:CAS:528:DC%2BD28XkslSnug%3D%3D&md5=7aa8a4608b233ad82f6fd4b64b4f3ad6CAS | 16391684PubMed | open url image1

Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiology 149, 340–351.
A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots.CrossRef | 1:CAS:528:DC%2BD1MXjt1Wqt7w%3D&md5=eecf4e09baa7c46022c56a3c551fe1f1CAS | 19005085PubMed | open url image1

Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37, 645–653.
A wheat gene encoding an aluminum-activated malate transporter.CrossRef | 1:CAS:528:DC%2BD2cXislyltr4%3D&md5=15319dc9d30b2c3d21e30ecef8a2cbc9CAS | 14871306PubMed | open url image1

Silva-Navas J, Benito C, Téllez-Robledo B, Abd El-Moneim D, Gallego FJ (2012) The ScAACT1 gene at the Qalt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). Molecular Breeding 30, 845–856.
The ScAACT1 gene at the Qalt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.).CrossRef | 1:CAS:528:DC%2BC38XhtFCrsb3M&md5=7fd97ca0dcfd8fb731854abae3cc232bCAS | open url image1

Tahara K, Yamanoshita T, Norisada M, Hasegawa I, Kashima H, Sasaki S, Kojima K (2008) Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance. Plant and Soil 307, 167–178.
Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance.CrossRef | 1:CAS:528:DC%2BD1cXlsV2ktrc%3D&md5=1b0c7d216fcf432739f2885e3c57cc8fCAS | open url image1

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6. Molecular Biology and Evolution 30, 2725–2729.
MEGA 6: molecular evolutionary genetics analysis version 6.CrossRef | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=2504364b976e0abdf7079f45f502bdb9CAS | 24132122PubMed | open url image1

Tice KR, Parker DR, Demason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiology 100, 309–318.
Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat.CrossRef | 1:CAS:528:DyaK38Xmt1yjs7c%3D&md5=08e2943a8b8d14b1cde89b0b209ef384CAS | 16652962PubMed | open url image1

Tovkach A, Ryan PR, Richardson AE, Lewis DC, Rathjen TM, Ramesh S, Tyerman SD, Delhaize E (2013) Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiology 161, 880–892.
Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices.CrossRef | 1:CAS:528:DC%2BC3sXmvFKqsL0%3D&md5=2f67dc939e70cfe3c62db2ef89860d9aCAS | 23204428PubMed | open url image1

Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant and Soil 171, 1–15.
Global extent, development and economic impact of acid soils.CrossRef | open url image1

Wang J, Raman H, Zhou M, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 115, 265–276.
High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.).CrossRef | 1:CAS:528:DC%2BD2sXmvFamu7s%3D&md5=e504f44c24c16a5ddb0281f93a71196bCAS | 17551710PubMed | open url image1

Yamamoto Y, Yukiko Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiology 125, 199–208.
Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots.CrossRef | 1:CAS:528:DC%2BD3MXjslymu7o%3D&md5=3b126e89c78e9d8aefb47d1eba4b39cdCAS | 11154329PubMed | open url image1

Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiology 128, 63–72.
Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells.CrossRef | 1:CAS:528:DC%2BD38XmvVSktw%3D%3D&md5=650d7c6f097b71b36528b8a3de7413daCAS | 11788753PubMed | open url image1

Yang XY, Yang JL, Zhou Y, Piñeros MA, Kochian LV, Li GX, Zheng SJ (2011) A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant, Cell & Environment 34, 2138–2148.
A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex.CrossRef | 1:CAS:528:DC%2BC3MXhs1Glt7nF&md5=f95bb57159b6f304693886648f60b275CAS | open url image1

Yokosho K, Yamaji N, Ma JF (2010) Isolation and characterization of two MATE genes in rye. Functional Plant Biology 37, 296–303.
Isolation and characterization of two MATE genes in rye.CrossRef | 1:CAS:528:DC%2BC3cXjvVGhurc%3D&md5=a9b47efb39b804f05f4c6d59f2d542fcCAS | open url image1

Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. The Plant Journal 68, 1061–1069.
An Al-inducible MATE gene is involved in external detoxification of Al in rice.CrossRef | 1:CAS:528:DC%2BC38Xmtlegug%3D%3D&md5=8c5bbeea8a1621b5e65a748291acab88CAS | 21880027PubMed | open url image1



Supplementary MaterialSupplementary Material (893 KB) Export Citation