A bioinformatic approach to the identification of a conserved domain in a sugarcane legumain that directs GFP to the lytic vacuole

Mark A. Jackson^{A,B,C}, Anne L. Rae^{A,B,D}, Rosanne E. Casu^{A,B}, Christopher P. L. Grof^{A,B}, Graham D. Bonnett^{A,B} and Donald J. Maclean^{A,C}

^ACooperative Research Centre for Sugar Industry Innovation through Biotechnology, University of Queensland, St Lucia, Qld 4072, Australia.

^BCSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Qld 4067, Australia. ^CSchool of Molecular and Microbial Sciences, University of Queensland, St Lucia, Qld 4072, Australia. ^DCorresponding author. Email: anne.rae@csiro.au

Accessory publication

Fig. S1. GFP reporter analysis in sugarcane callus. GFP fluorescence evident within large vacuolar compartments of sugarcane callus cells transformed with constructs (*A*) pCvsEndoexp1, (*B*) pCvsEndoexp2 and (*C*) pCvsEndoexp3. (Scale bar indicates $50 \,\mu$ m).