A bioinformatic approach to the identification of a conserved domain in a sugarcane legumain that directs GFP to the lytic vacuole

Mark A. JacksonA,B,C, Anne L. RaeA,B,D, Rosanne E. CasuA,B, Christopher P. L. GrofA,B, Graham D. BonnettA,B and Donald J. MacleanA,C

ACooperative Research Centre for Sugar Industry Innovation through Biotechnology, University of Queensland, St Lucia, Qld 4072, Australia.
BCSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Qld 4067, Australia.
CSchool of Molecular and Microbial Sciences, University of Queensland, St Lucia, Qld 4072, Australia.
DCorresponding author. Email: anne.rae@csiro.au

Accessory publication

\textbf{Fig. S1.} GFP reporter analysis in sugarcane callus. GFP fluorescence evident within large vacular compartments of sugarcane callus cells transformed with constructs (A) pCvsEndoexp1, (B) pCvsEndoexp2 and (C) pCvsEndoexp3. (Scale bar indicates 50\,µm).