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Accessory Publication 

Supplement:  Perturbation expansion for non-small  Ξ .         

 This is somewhat of an artistic endeavor rather than a step-by-step plod.  

In our hands, it went like this.         

 First, define  ε = Ξ–1 .  Eq. (19) then becomes  

  εω## – εω# ω + ω[κε] + 1 = 0 .       (S1)   

For large  Ξ , ε << 1  and is a small parameter multiplying the highest order 

derivative; therefore, it seems reasonable to treat (S1) as a singular perturbation 

problem (Van Dyke 1964; Jordan and Smith 1990).  This then requires splitting 

the ζ-interval (0,1) into three segments:  (i) denoted by a subscript  l   for a 

source-like leaf, an “inner” region near  ζ = 0  where rapid variation of  ω  seems 

likely†; (ii) denoted by a subscript  r  for a sink-like root, a second “inner” region 

near  ζ = 1  where rapid variation of  ω  seems likely; (iii) denoted by a subscript  

a  for the German ‘äusser’, an “outer” region of transport phloem where  ω  varies 

only slowly.  Boundary conditions are applied to the inner solutions and the 

complete solution achieved by “matching” the inner solutions to the outer solution 

at points far from the boundaries.   

 For the outer solution, let   

  ωa = ωa0 + εωa1 + ε2ωa2 + …       (S2)  

                                                 
† The “inner” label derives from fluid mechanics where it denotes a region near a boundary where rapid 
variation of a dependent variable is to be expected.  “Outer” then denotes a region far from the boundaries 
where much less rapid variation is anticipated.    



Then observe from Fig. 2 that, for large values of the forcing parameter  Ξ ,       

κε ∝ Ξ–⅓ , which very crudely can be considered to be of order zero in  ε . 

Plug (S2) into (S1) and, approximating  κε = 2(ε0) , group terms in  ε0 , ε1 ,          

ε2 , … , εn , …  to obtain:     

Order 0: 0 = ωa0[κε] + 1  ⇒  ωa0 = – 1
κε  ;      (S3)          

Order 1: 0 = ωa0
## – ωa0 ωa0

# + ωa1[κε]  ⇒  ωa1 = 0 ;    (S4)          

Order 2: 0 = ωa1
## – (ωa0 ωa1

# + ωa1 ωa0
#) + ωa2[κε]  ⇒  ωa2 = 0 ;  (S4)          

and, by induction,  

Order n:  0 = ωan  ,  n ^ 3 .      (S5) 

This perturbation is unusual in that the term of order zero is a constant and the 

higher order terms are approximately zero: 

  ωa = ωa0 = – 1
κε  = – Ξκ  .      (S6) 

Using the values of  ωmax  derived by numerical integration as a proxy for  ωa0 , 

Fig. 6 demonstrates the accuracy of Eq. (S6) for large values of  Ξ . 

 To derive an inner expansion near  ζ = 0 , define a “stretched” coordinate  

ś  defined by  ś = ζε–½  and transform Eq. (S1) to  

  
d2ωl

dś2   – ε½ωl 
dωl

dś   + ωl [κε] + 1 = 0 ,       (S7)   

where the inner approximation  ωl  is expressed as  

  ωl = (ε½)0ωl0 + (ε½)1ωl1 + (ε½)2ωl2 + 2((ε½)3)  .     (S8)                                



The relevant boundary conditions are  

  ωl(0) = 0             (S9)   

and‡   

   lim
ś→∞

  ωl(ś) = ωa = ωa0 = – 1
κε   .       (S10) 

Next, substitute (S8) into (S7), group terms by order of  (ε½)  while presuming 

that  [κε]  can be treated as of order zero for grouping purposes, and obtain:   

Order 0: 
d2ωl0
dś2   – [–κε]ωl0  = –1 .       (S11) 

Order 1: 
d2ωl1
dś2   – [–κε]ωl1  = ωl0 

dωl0
dś   .      (S12) 

Order 2: 
d2ωl2
dś2   – [–κε]ωl2  = ωl0 

dωl1
dś  + ωl1 

dωl0
dś   .     (S13) 

The solution of Eq. (S11) subject to the boundary conditions (S9) and (S10) can 

be found by elementary means to be 

  ωl0(ś) = ωa [1 – e–śþ] = þ–2[1 – e–śþ]  ,              (S14)   

where  þ2 = [–κε]  and  þ = –κε  ; it is completely determined except for the 

value of  κ .  Subject to the boundary conditions  ωl1(0) = 0  and   lim
ś→∞

 ωl1(ś) = 0 , 

(S12) can also be solved by elementary means as    

  ωl1(ś) =  þ–5[⅓e–śþ – ⅓e–2śþ – ½śþe–śþ] ,    (S15) 

                                                 
‡ More exactly, the condition (C10) should be that  ωl(ś)  approach  ωa  closely as  ś  becomes very large.  
In practice, it is usually applied as stated.           



although the algebra is slightly more complicated.  Subject to the boundary 

conditions  ωl2(0) = 0  and   lim
ś→∞

 ωl2(ś) = 0 , (S13) can likewise be solved by 

elementary means as    

ωl2(ś) =  þ–8[– 1/24e–śþ + 1/6e–2śþ – 1/8e–3śþ + 7/24śþe–śþ – 1/3śþe–2śþ – 1/8(śþ)2e–śþ],   (S16) 

although the algebra is rather more complicated. 

 To derive an inner expansion near  ζ = 1 , it is useful to employ the 

variable  ξ = 1 – ζ  and to define a new “stretched” coordinate  ş = ξε–½ .  This 

yields the differential equation 

  
d2ωr

dş2   + ε½ωr 
dωr

dş   + ωr [κε] + 1 = 0 ,       (S17)   

where the inner approximation  ωl  can be expanded as  

  ωr = (ε½)0ωr0 + (ε½)1ωr1 + (ε½)2ωr2 + 2((ε½)3)  .     (S18)                              

The relevant boundary conditions are  

  ωr(0) = 0             (S19)   

and   

   lim
ş→∞

  ωr(ş) = ωa = ωa0 = – 1
κε  = þ–2 .      (S20)    

At this boundary, however, we have the additional condition (20c) which must 

eventually be met, but not just yet:   

  
dωr

dş   = –κε½ = þ2 ε–½ ,  ş = 0  .             (S21) 

First, substitute (S18) into (S17) to get (in analogy to the development for the 

boundary at  ζ = 0):      



Order 0: 
d2ωr0
dş2   – þ2ωr0  = –1 .       (S22) 

Order 1: 
d2ωr1
dş2   – þ2ωr1  = – ωr0 

dωr0
dş   .      (S23) 

Order 2: 
d2ωr2
dş2   – þ2ωr2  = – ωr0 

dωr1
dş  – ωr1 

dωr0
dş   .     (S24) 

The solution of Eq. (S22) subject to the boundary conditions (S19) and (S20) can 

be found by elementary means to be 

  ωr0(ş) = ωa [1 – e–şþ] = þ–2[1 – e– şþ]  ;              (S25)   

it is completely determined except for the value of  κ .  Subject to the boundary 

conditions  ωr1(0) = 0  and   lim
ş→∞

 ωr1(ş) = 0 , (S23) can also be solved by 

elementary means as    

  ωr1(ş) =  –þ–5[⅓e–şþ – ⅓e–2şþ – ½ şþe–şþ] ,    (S26) 

although the algebra is slightly more complicated.  Subject to the boundary 

conditions  ωr2(0) = 0  and   lim
ś→∞

 ωr2(ś) = 0 , (S24) can likewise be solved by 

elementary means as    

ωr2(ş) = þ–8[– 1/24e–şþ + 1/6e–2şþ – 1/8e–3şþ + 7/24şþe–şþ – 1/3şþe–2şþ – 1/8(şþ)2e–şþ] .   (S27) 

 The final step is the determination of  κ  by application of the boundary 

condition (S21) at  ş = 0 .  Note first that:  

  
dωr0
dş  ]ş=0 = þ–1 ;       (S28a) 

  
dωr1
dş  ]ş=0 = þ–4/6 ;                              (S28b) 

  
dωr2
dş  ]ş=0 = þ–7/24 .           (S28c)  



Order 0: (ε½)0[þ–1]  = þ2 ε–½  ⇒  κ0 = – Ξ⅔ ;      (S29a) 

Order 1: (ε½)0[þ–1] + (ε½)1[(1/6)þ–4] = þ2 ε–½  ⇒   

  κ1 = – Ξ⅔
 [½(1 + 5/3 )]⅔  8 – Ξ⅔ [1.0948] ; (S29b) 

Order 2: (ε½)0[þ–1] + (ε½)1[(1/6)þ–4]  + (ε½)2[(1/24)þ–7] = þ2 ε–½  ⇒    

  κ2 8 – Ξ⅔
 [1.1120] 8 – 

19/17 Ξ⅔ .     (S29c) 

 


