Fig. S1. Growth of the endosperm relies completely on substrate supply from vegetative tissues. A method to label N dynamics by applying 15N at a rate calculated to supply about 10% worth of N uptake per day has previously been published (Sheehy et al. 2004a, 2004b, 2005). In those studies, the pattern of 15N recovery by all the plants is described by the following equation

$$y = a(1 - \exp(bx)), \quad (S1)$$

where a represents the maximum recovery of 15N, and the initial slope of the curve is ab. The pattern of 15N recovery in the present study fits the same equation where $a = 60.32\%$ and $b = 0.10$.
h. Sheehy et al. (2004a, 2004b, 2005) consistently report a as 5–7 higher than here. When plants were labelled during grain-filling, about 4–8% of the label was found in the roots (Sheehy et al. 2004a). In the present study, 15N was only measured in the above-ground tissue, explaining the discrepancy. In addition, Sheehy et al. (2004a, 2004b) report values of b 7–10 times lower than reported in the present study, with variability explained by the stage of the plant when pulsed, leading to a range of 10–14 days to reach maximum recovery, compared to just 12 h in this study. It is probable that 15N is much more available to roots when in solution culture than when in soil since dilution, exchange with other N and decay are avoided. A maximum recovery of about 60% is the same as found previously (Sheehy et al. 2004a, 2004b, 2005). We presume that the remaining 15N was lost to volatilisation along the low resistance pathway through aerenchyma cells.

References