
Gas exchange measurements

John Evans http://biology.anu.edu.au/john_evans/

10.1071/FP10900_AC © CSIRO 2014 Supplementary Material: *Functional Plant Biology*, 2014, 41(3), 223-226.

http://www.licor.com/env/Products/li6400/6400_manuals.jsp

Transpiration

The mass balance of water vapor in an open system (Figure 1-4) is given by

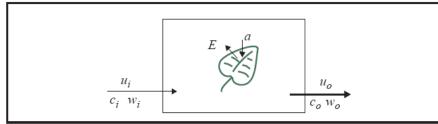


Figure 1-4. Measuring fluxes in an open system. Transpiration rate (E) and photosynthetic rate (a) change the water and CO_2 concentrations of air as it passes through the chamber. Transpiration also causes the exit flow u_0 to be greater than the incoming flow rate (u_i).

$$sE = u_o w_o - u_i w_i \tag{1-1}$$

where s is leaf area (m⁻²), E is transpiration rate (mol m⁻² s⁻¹), u_i and u_o are incoming and outgoing flow rates (mol s⁻¹) from the chamber, and w_i and w_o are incoming and outgoing water mole fractions (mol H₂O mol air⁻¹). Since

$$u_o = u_i + sE \tag{1-2}$$

we can write

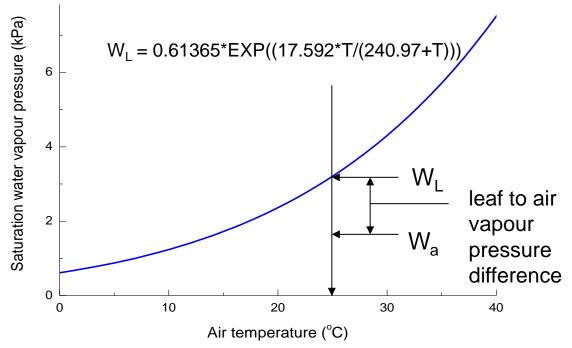
$$sE = (u_i + sE)w_o - u_i w_i \tag{1-3}$$

which rearranges to

$$E = \frac{u_i(w_o - w_i)}{s(1 - w_o)}$$
(1-4)

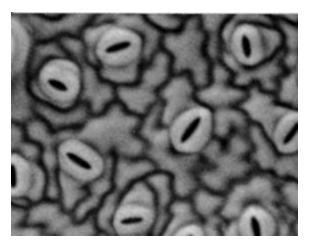
¹S.von Caemmerer and G.D.Farquhar (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves, *Planta* 153:376-

Sections of this handout are copied from 'Using the LI-6400' which can be downloaded from the link above. The manuals contain detailed information and helpful pictures. This handout is aimed at providing a quick guide to some of the basic information to get you started.


Page 1-7

Knowing E, we can calculate conductance, g

$$\mathsf{E} = \mathsf{g} (\mathsf{W}_{\mathsf{L}} - \mathsf{W}_{\mathsf{a}})$$


 $g = E / (W_L - W_a)$

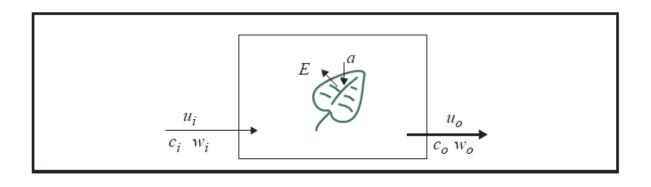
Function relating saturation vapour pressure to temperature

E	Transpiration rate
g	conductance to
	water
W	saturation vapour
	pressure inside leaf
W _a	vapour pressure in
	air

Conductance is the ease with which gases can exchange between two places. Exchange occurs through stomatal pores in the epidermis. Plants control water loss by varying stomatal apertures.

Net Photosynthesis

The mass balance of CO_2 in an open system is given by

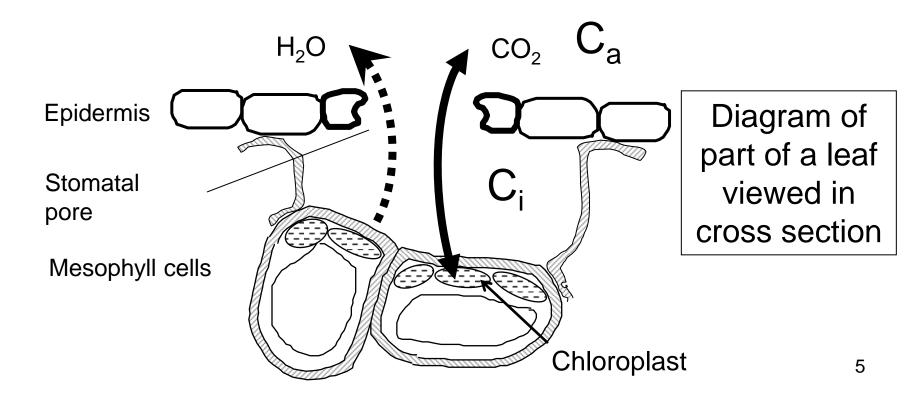

$$sa = u_i c_i - u_o c_o \tag{1-11}$$

where *a* is assimilation rate (mol CO₂ m⁻² s⁻¹), c_i and c_o are incoming and outgoing mole fractions (mol CO₂ mol air⁻¹) of carbon dioxide. Using (1-2), we can write

$$sa = u_i c_i - (u_i + sE)c_o$$
 (1-12)

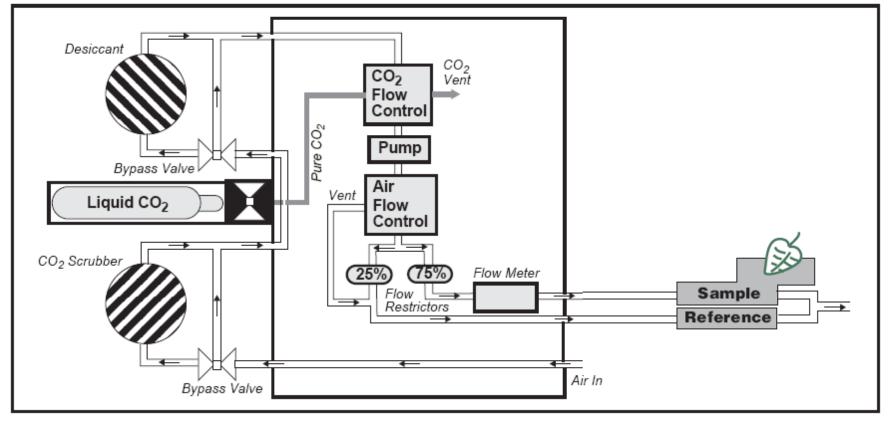
which rearranges to

$$a = \frac{u_i(c_i - c_o)}{s} - Ec_o$$
(1-13)

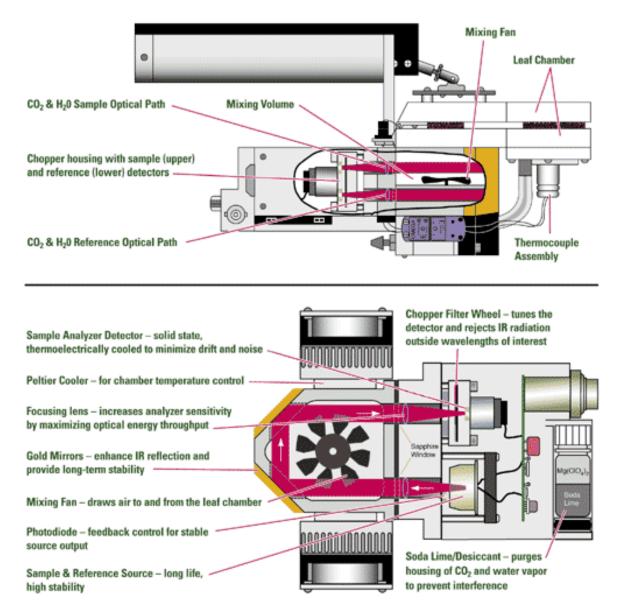


Page 1-9

Using Fick's Law, we can relate the rate of CO_2 assimilation to conductance and calculate the intercellular CO_2 mole fraction


$$A = g/1.6 (C_a - C_i)$$

$$C_{i} = C_{a} - 1.6 \text{ A/g}$$



Licor 6400 gas flow diagram

Schematic with a 6400-01 CO2 Mixer

Cross section through the LI6400 head showing the optical path of the two infra red gas analyzers

To reduce errors, sample cell gas is passed through the reference cell and the outputs from the two IRGAs are set to the same value. This is called matching. (f5 level 1 in New Measurements mode)

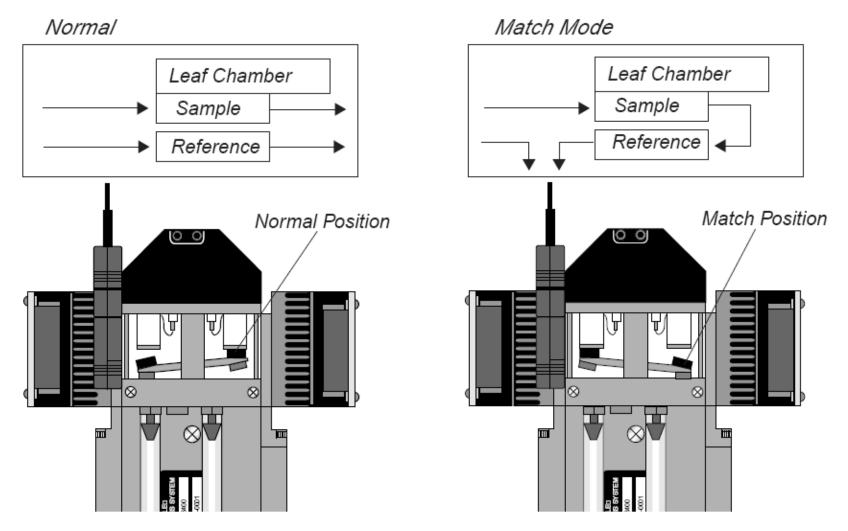
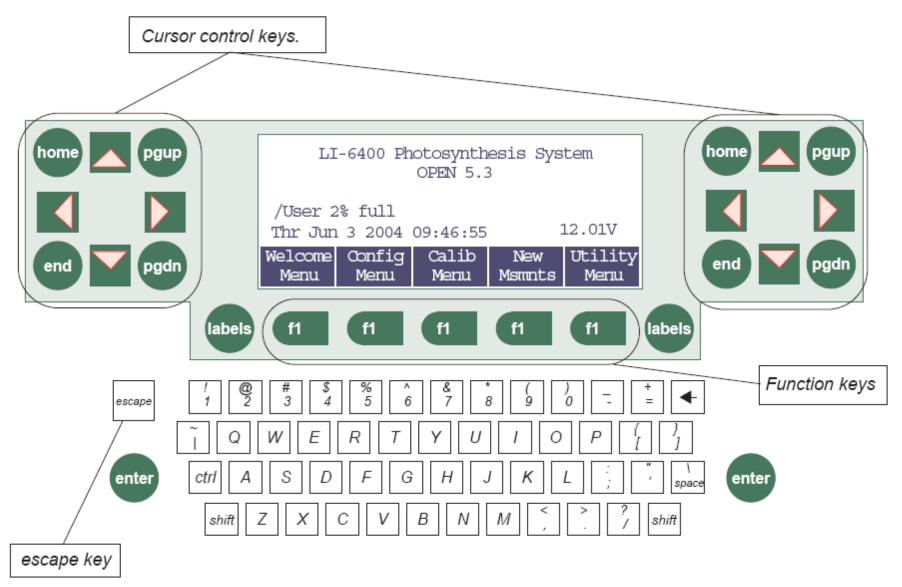
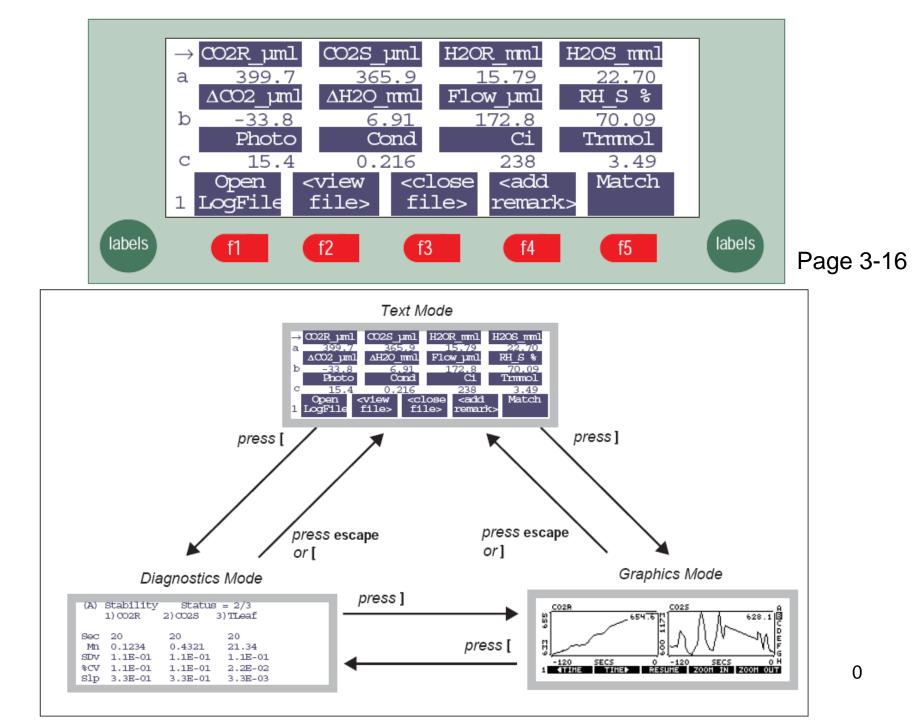
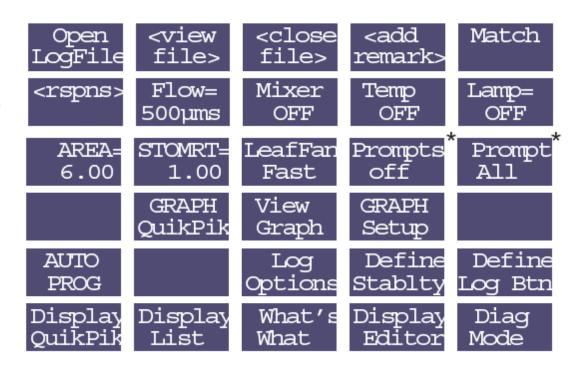
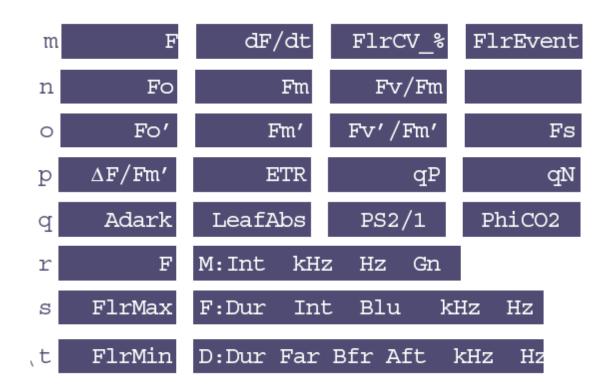




Figure 4-2. The match valve puts exhaust air from the sample cell into the reference cell, allowing both cells to be matched without altering conditions in the leaf chamber. Page 4-34



Parameters, their units and location Page 3-21

Group	Label	Description
А	CO2R_µml	Reference cell $CO_2 \ (\mu mol \ CO_2 \ mol^{-1})$
	CO2S_µml	Sample cell CO ₂ (µmol CO ₂ mol ⁻¹)
	H2OR_mml	Reference cell H ₂ O (mmol H ₂ O mol ⁻¹)
	H2OS_mml	Sample cell H ₂ O (mmol H ₂ O mol ⁻¹)
В	∆CO2_µml	CO_2 delta (sample - reference) (µmol CO_2 mol ⁻¹)
	Δ H2O_mml	H ₂ O delta (sample - reference) (mmol H ₂ O mol ⁻¹)
	Flow_µml	Flow rate to the sample cell (μ mol s ⁻¹)
	RH_S_%	Relative humidity in the sample cell (%)
С	Photo	Photosynthetic rate (µmol CO ₂ m ⁻² s ⁻¹)
	Cond	Conductance to H ₂ O (mol H ₂ O m ⁻² s ⁻¹)
	Ci	Intercellular CO_2 concentration (µmol CO_2 mol ⁻¹)
	Trmmol	Transpiration rate (mmol H ₂ O m ⁻² s ⁻¹)
D	Ci/Ca	Intercellular CO ₂ / Ambient CO ₂
	VpdL	Vapor pressure deficit based on Leaf temp (kPa)
	VpdA	Vapor pressure deficit based on Air temp (kPa)
Е	Stable	Stability status: # Stable / # Checked
	StableF	Stability status as a decimal value
	<letters></letters>	Stability flags: 1's and 0's for each variable
	TotalCV	Sum of the CVs of the stability variables
F	RH_R_%	Relative humidity in the reference cell (%)
	RH_S_%	Relative humidity in the sample cell (%)
	Td_R_%	Dew point temp in the reference cell (C)
	Td_S_%	Dew point temp in the sample cell (C)


Group	Label	Description
G	Prss_kPa	Atmospheric pressure (kPa)
	ParIn_µm	In-chamber quantum sensor (µmol m ⁻² s ⁻¹)
	ParOutµm	External quantum sensor (µmol m ⁻² s ⁻¹)
	BLC_mol	Total boundary layer conductance for the leaf (includes stomatal ratio) (mol $m^{-2} s^{-1}$)
н	Tblock°C	Temperature of cooler block (C)
	Tair°C	Temperature in sample cell (C)
	Tleaf°C	Temperature of leaf thermocouple (C)
I	HH:MM:SS	Real time clock
	Program	Shows AutoProgram status
	CHPWMF	Status word (summary of line J)
	Battery	Battery voltage (V)
J	CO2	Status of CO ₂ IRGAs
	H2O	Status of H ₂ O IRGAs
	Pump	Status of pump
	Flow	Status of Flow controller
	Mixr	Status of CO ₂ mixer
	Fan	Speed of chamber fan
к	Program	Shows AutoProgram status
	ProgPrgs	AutoProgram step counter
	FwMxCrLp	Numerical summary of the four stability flags
	Stable	Stability status
L	CRagc_mv	Reference $\mathrm{CO}_2\mathrm{AGC}$ (automatic gain control) signal, in mV
	CSagc_mv	Sample CO ₂ AGC signal
	HRage_mv	Reference H ₂ O AGC signal
	HSagc_mv	Sample H ₂ O AGC signal

- 1 Logging control; IRGA matching
- 2 Environmental control manager keys (CO₂, humidity, temp, light)
- **3** Chamber fan speed; system and user-defined constants
- 4 Real Time Graphics control
- 5 AutoProgram control; defining what's logged.
- 6 Text display control

Flr Define Rardnq Flr Flr Editor 8 QuikPik Actinic Adjust OFF Actinic Flash FarRed Dark Meas 9 is ON Pulse is OFF is OFF View Do Do Do When Actinic Off 0 Fo Fm FoFm Fsh/Drk View Do Fs Do Do Do When Actinic On <u>΄</u>Ο Fsh/Drk Fo' Fs FsFm' Fm' Fo'

Pages 3-17, 27-18

: 6400-40 LCF

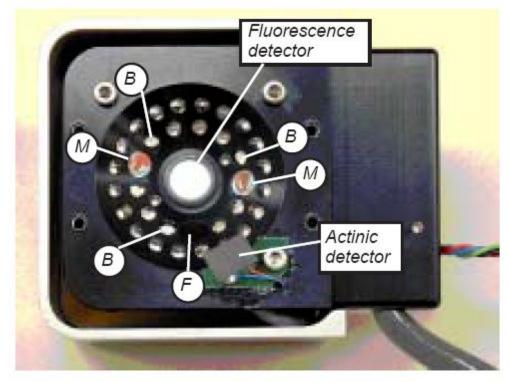


Figure 27-1. View of the LEDs of the LCF, showing the two red modulated measuring beam LEDs (M), the three blue actinic LEDs (B), and the far red LED (F). The remaining LEDs are red, and are used for actinic and saturating flashes.

Page 27-22

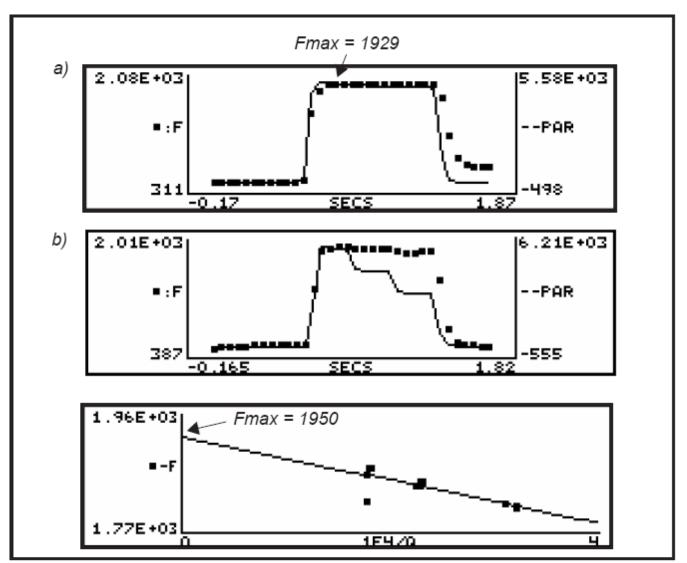
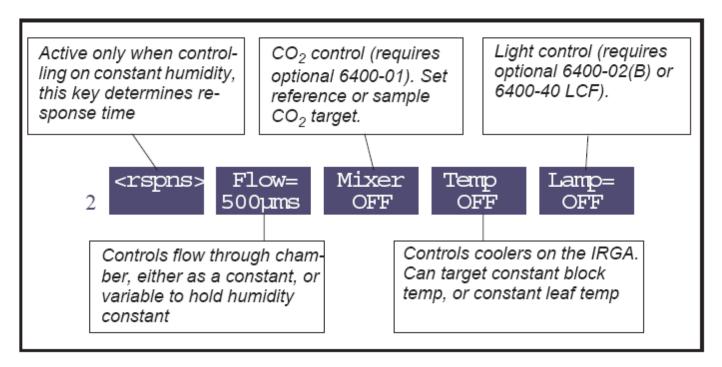
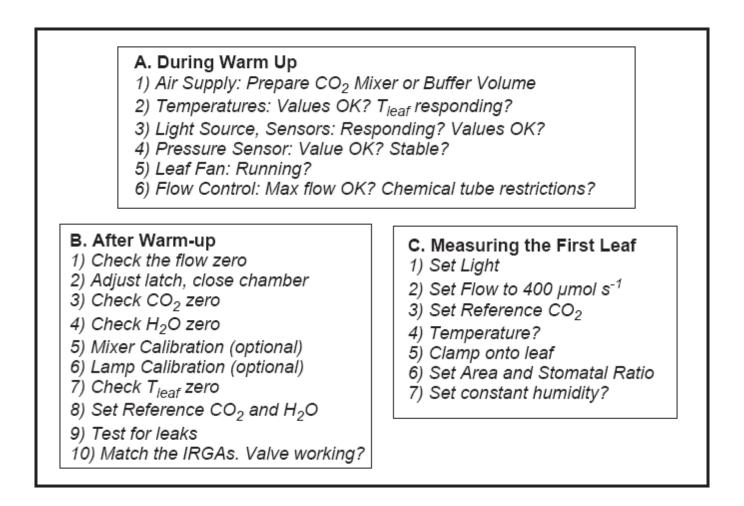



Figure 27-17. Two types of saturating flashes: a) single and b) multiple intensity with regression analysis.

Controlling Chamber Conditions


Chamber conditions are controlled from New Measurements mode via the function keys on level 2 (Figure 3-25).

Set Area and Stomatal Ratio

In New Measurements mode, press **3**, and set the leaf area and stomatal ratio for this leaf. Leaf area is simply the area exposed inside the chamber. If you are using a 2x3 chamber and filling it, the area is 6 cm^2 . Stomatal ratio is an estimate of the ratio of stomata on one side of the leaf to the other. Use 1 for equal stomatal density on top and bottom; 0 for stomata on only one side. If you aren't sure, use 0.5. It doesn't matter if you use the ratio of top to bottom, or bottom to top. Thus, 0.5 is the same as 2; 0.333 is the same as 3, etc.

Checklist for using the LI6400

