10.1071/FP11190_AC

© CSIRO 2012

Accessory Publication: Functional Plant Biology 39(5), 435–448.

Supplementary material

Table 1. Mean values of CO₂ mole fraction in the measurement chamber (C_a) according to the different treatments of irradiance and O₂ availability (mean \pm s.d., n = 15)

Irradiance (PPFD)	21% O ₂	1% O ₂
$1000 \ \mu mol \ m^{-2} \ s^{-1}$	$335.5 \pm 18.1 \ \mu mol \ mole^{-1}$	$320.4 \pm 23.0 \ \mu mol \ mole^{-1}$
600 μ mol m ⁻² s ⁻¹	$344.1 \pm 12.9 \ \mu mol \ mole^{-1}$	$327.5 \pm 17.9 \ \mu mol \ mole^{-1}$
200 μ mol m ⁻² s ⁻¹	$373.2 \pm 3.5 \ \mu mol \ mole^{-1}$	$361.9 \pm 3.6 \ \mu mol \ mole^{-1}$

Table 2. Effects of irradiance (PPFD, 3 levels), species (3 *Eucalyptus* species) and O₂ (21 and 1%) on g_m computed with different values of the model parameters R_d , f, Γ^* and b (see Equation 4)

Parameter values were kept stable across irradiance and O_2 levels, except for Γ^* , which was recalculated under low O_2 . Irradiance, species and O_2 effects were incorporated into the model as fixed effects, and *individual plant* as a random effect. In case of heteroscedastic data the m ean was weighted as a function of the variance. Degrees of freedom are indicated as subscript of F value

		$R_d=0$	$R_d = 2$	$R_d = 3$	<i>e</i> =-15	<i>e</i> =-5	<i>e</i> =+15	f=0	<i>f</i> =5	<i>f</i> =15	Г*=30	Γ * =35	Г*=50	<i>b</i> =26	<i>b</i> =27	<i>b</i> =30
PPFD	F _(2,60)	177	133	111	211	187	61.7	188	189	139	172	168	142	181	163.66	283.40
	P	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
Species	$F_{(2,12)}$	10.6	12.7	12.9	6.16	9.26	18.5	12.0	12.3	12.6	12.2	12.4	12.3	4.24	8.99	5.94
	P	0.002	0.001	0.001	0.014	0.0037	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.04	0.004	0.016
O ₂	$F_{(1,60)}$	77.0	53.1	44.0	101	83.0	30.4	184	143	31.8	94.2	80.4	37.7	16.8	67.28	141.68
	P	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
PPFD ×	$F_{(4,60)}$	46.6	NS	NS	5.36	4.18	NS	4.56	4.30	NS	3.23	3.10	2.55	7.55	4.15	9.98
Species	Р	0.009	NS	NS	0.0008	0.004	NS	0.002	0.003	NS	0.01	0.02	0.04	0.001	0.004	<.0001
PPFD ×	$F_{(2,60)}$	NS	NS	4.67	NS	NS	NS	4.47	3.35	NS	NS	NS	NS	NS	NS	NS
O_2	P	NS	NS	0.012	NS	NS	NS	0.015	0.04	NS	NS	NS	NS	NS	NS	NS