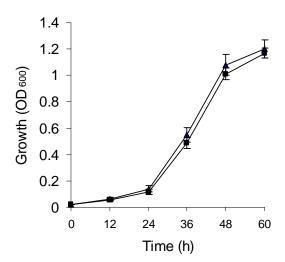
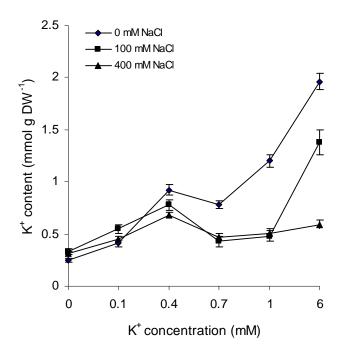
Supplementary Material

SsHKT1;1 is a potassium transporter of the C₃ halophyte *Suaeda salsa* that is involved in salt tolerance


Qun Shao^A, Ning Han^{A,C}, Tonglou Ding^A, Feng Zhou^{A,C} and Baoshan Wang^{A,D}

^AKey Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250 014, China.


^BPresent address: Key Laboratory of Biotechnology, College of Food and Biologic Engineering, Qi Lu University of Technology, Jinan 250 353, China.

^CPresent address: School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211 171, China.

^DCorresponding author. Email: bswang@sdnu.edu.cn

Fig. S1. Growth curve of *S. cerevisiae* G19 (pYES2-Ss *HKT1;1*) (■) and G19 (pYES2) (▲) in liquid SC-U+Gal culture containing 400 mM NaCl. Data are the means of three replicates and vertical bars represent s.e.

Fig. S2. Effects of K^+ nutrition and NaCl treatments on K^+ content in leaves of *S. salsa* seedlings. Data are the means of five replicates and vertical bars represent s.e.

Table S1. Na⁺ uptake of control and K⁺-starved S. salsa roots

Numbers with common superscript letter (a) are not significantly different at $P \le 0.05$ according to Duncan's multiple range test, 6 replicates from 2 experiments. There is no significant difference at $P \le 0.05$ between control and treatment according to T-test.

	External Na ⁺ concentration (mM)	
Uptake time (h)	Cor	ntrol Treatment
0	0.174 ± 0.000^{a}	0.174 ± 0.000^{a}
2	0.180 ± 0.164^{a}	0.180 ± 0.016^a
4	0.190 ± 0.023^{a}	0.180 ± 0.016^a
6	0.183 ± 0.019^{a}	0.189 ± 0.023^a