Supplementary Material

Foliar trait contrasts between African forest and savanna trees: genetic versus environmental effects

Franziska Schrodt^{A,O}, Tomas F. Domingues^{B,P}, Ted R. Feldpausch^{A,Q}, Gustavo Saiz^C, Carlos Alberto Quesada^D, Michael Schwarz^E, F. Yoko Ishida^{D,F}, Halidou Compaore^G, Adamo Diallo^H, Gloria Djagbletey^I, Fidele Hien^G, Bonaventure Sonké^K, Herman Toedoumg^K, Loius Zapfack^K, Pierre Hiernaux^J, Eric Mougin^J, Michael. I. Bird^L, John Grace^B, Simon L. Lewis^{A,M}, Elmar M. Veenendaal^N and Jon Lloyd^{F,R,S}

^ASchool of Geography, University of Leeds, LS2 9JT, UK.

^BSchool of Geosciences, University of Edinburgh, EH8 9XP, Scotland, UK.

^CKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research, 82467, Garmisch-Partenkirchen, Germany.

^DInstituto Nacional de Pesquisas da Amazonia, Manaus, Cx Postal 2223 – CEP 69080-971, Brazil.

^EFieldwork Assistance, PSF 101022, 07710, Jena, Germany.

^FSchool of Tropical and Marine Sciences and Centre for Terrestrial Environmental and Sustainability Sciences, James Cook University, Cairns, Qld 4870, Australia.

^GInstitut de l'Environnement et de Recherches Agricoles, 04 BP 8645, Ouagadougou, Burkina Faso.

^HCentre National des Semences Forestières, BP 2682, Ouagadougou, Burkina Faso.

^IEcosystem and Climate Change Division, Forestry Research Institute of Ghana, PO Box UP 63 KNUST Kumasi, Ghana.

^JGéosciences Environnement Toulouse, Observatoire Midi-Pyrénées, 14, avenue Edouard Belin - 31400 Toulouse, France.

^KPlant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College. University of Yaounde, PO Box 047, Yaounde Cameroon.

^LSchool of Earth and Environmental Sciences and Centre for Terrestrial Environmental and Sustainability Sciences, James Cook University, Cairns, Qld 4870, Australia.

^MDepartment of Geography, University College London, WC1E 6BT, UK.

^NCentre for Ecosystem Studies, University of Wageningen, PO Box 47, 6700AA, Wageningen, Netherlands.

^oPresent address: Max Planck Institute for Biogeochemsitry, Postfach 10 0164, 07701 Jena, Germany and iDiv, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Deutscher Platz 5e,04103 Leipzig, Germany.

^PPresent address: Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Av Bandeirantes, 3900, CEP 14040-901, Bairro Monte Alegre, Ribeirão Preto, SP, Brazil.

^QPresent address: College of Life and Environmental Sciences, University of Exeter, EX4 4RJ, UK.

^RDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL6 7PY, UK.

^sCorresponding author. Email: jonathan.lloyd@imperial.ac.uk

<u>CONTENTS</u>

_

S1: Details of sampling sites

- S2: Mixed model output and diagnostics
- S3. Multivariate analysis of variance (MANOVA)
- S4: Bivariate relationships
- S5: Principal Component Analysis

Figure S1.1 Map showing sampling sites and precipitation seasonality

Table S1.1 Plot coordinates, Torello-Raventos *et al.* (2013) vegetation classification V, elevation above sea level E_v , mean annual temperature T_A , mean annual precipitation P_A , seasonality index *v*, mean upper stratum canopy height $\langle H \rangle_U$, upper stratum canopy area index C_U , soil pH, soil exchangeable cations, soil extractable phosphorus and Wold Reference Base (WRB) soil classification for the study sites. Soil values represent the top 0.3 m of soil.

DI	Ŧ	T		$E_{\rm V}$ $T_{\rm A}$	$P_{\rm A}$		$\langle H \rangle_{\rm II}$	$C_{\rm U}$		[Al] _e	[Ca] _{ex}	[K] _{ex}	$[Mg]_{ex}$	[Na] _{ex}	[P] _{exch}	
Plot	Lat.	Long.	V	(m) (°C)	(m)	U	(m)	(m ² m ⁻ ²)	pН		mr	nol _{eq} k	kg-1		(μg g ⁻¹)	WRB Soil Classification
Cameroo	<u>n</u>															
MDJ-01	6.168N	12.825E	Tall forest	773 23.8	1.61	0.50	17.3	2.73	6.53	0.4	14.1	1.1	5.9	0.0	414	Haplic Lixisol (Humic, Chromic)
MDJ-02	6.163N	12.824E	Long-grass savanna	867 23.4	1.62	0.50	6.4	0.39	5.42	1.5	6.3	0.3	2.5	0.1	392	Pisolithic Plinthosol (Humic)
MDJ-03	5.984N	12.869E	Stunted shrub-rich forest	761 23.9	1.59	0.48	15.6	2.45	4.88	2.4	3.4	2.8	4.2	0.2	120	Pisolithic Plinthosol (Dystric)
MDJ-04	5.999N	12.868E	Long-grass savanna	755 23.9	1.59	0.49	6.3	0.34	4.92	4.8	3.3	0.7	1.1	0.1	141	Haplic Ferralsol (Dystric)
MDJ-05	5.980N	12.868E	Stunted shrub-rich forest	768 23.9	1.59	0.48	11.6	1.64	4.50	5.2	0.8	0.2	0.5	0.1	285	Pisolithic Plinthosol (Dystric)
MDJ-06	6.003N	12.891E	Long-grass savanna	755 23.9	1.59	0.49	7.1	0.64	4.83	3.8	2.9	0.5	1.2	0.1	88	Pisolithic Plinthosol (Humic, Clayic)
MDJ-07	6.007N	12.886E	Tall forest	755 23.9	1.59	0.49	12.6	1.38	4.70	2.6	4.1	1.0	2.1	0.1	463	Pisolithic Plinthosol (Ferric, Dystric)
MDJ-08	6.213N	12.749E	Long-grass savanna	772 23.8	1.62	0.50	7.8	0.45	5.81	0.7	9.9	1.3	5.0	0.2	135	Haplic Lixisol (Humic, Endoskeletic)
MDJ-10	5.997N	12.894E	Tall closed woodland (wl)	766 23.8	1.59	0.49	14.8	1.78	4.93	2.1	1.1	0.8	1.3	0.1	ND	Pisolithic Plinthosol (Humic, Dystric)
<u>Ghana</u>																
ASU-01	7.136N	2.447W	Tall forest	$263\ 26.0$	1.21	0.29	18.6	0.72	5.20	1.3	18.0	1.0	9.4	0.4	106	Endofluvic Cambisol (Dystric)
BFI-01	7.714N	1.694W	Tall closed wl	358 25.4	1.29	0.34	12.0	0.45	6.60	0.3	23.7	1.0	6.1	0.1	103	Haplic Alisol(Arenic, Hyperdystric, Rhodic)
BFI-02	7.715N	1.692W	Tall savanna wl	358 25.4	1.29	0.34	14.4	0.87	5.73	0.3	9.3	0.9	3.0	0.1	73	Brunic Arenosol (Alumic, Hyperdystric)
BFI-03	7.707N	1.698W	Tall forest	350 25.4	1.29	0.34	17.7	1.38	6.26	0.2	26.4	2.7	11.3	0.1	347	Haplic Nitosol (Dystric)
BFI-04	7.707N	1.698W	Tall forest	350 25.4	1.29	0.34	16.8	1.86	6.52	0.1	23.2	1.8	6.9	0.1	47	Haplic Nitosol (Dystric)
KOG-01	7.302N	1.180W	Tall savanna wl	201 26.3	1.25	0.33	10.0	0.68	5.56	0.3	7.1	0.5	2.5	0.1	62	Haplic Arenosol (Dystric)
MLE-01	9.304N	1.857W	Savanna wl	134 27.9	1.03	0.53	7.6	0.32	6.22	0.6	8.6	1.3	5.8	0.1	48	Brunic Arenosol (Dystric)
Burkina I	Faso															
BBI-01	12.731N	1.165W	Savanna wl	275 28.3	0.69	0.76	6.5	0.52	5.74	0.6	23.9	0.9	15.9	0.9	59	Haplic Luvisol (Epidystric, Endosiltic)
BBI-02	12.733N	1.164W	Savanna wl	275 28.3	0.69	0.76	6.7	1.00	5.86	0.2	19.9	0.8	9.3	0.2	74	Pisolithic Plinthosol (Eutric)
BDA-01	10.940N	3.150W	Shrub-rich savanna wl	$264\ 27.8$	0.98	0.67	7.7	0.22	6.00	0.1	25.6	1.4	13.3	0.3	72	Haplic Fluvisol (Magniferric, Dystric, Siltic)
BDA-02	10.940N	3.154W	Shrub-rich savanna wl	258 27.9	0.98	0.67	7.8	0.03	5.60	1.2	16.8	0.7	9.6	0.5	49	Acric Stagnic Plinthosol (Magniferric, Dystric, Siltic)
Mali																

Plot Lat. Long. 🛛	$\begin{array}{ccc} E_{\rm V} & T_{\rm A} & P_{\rm A} \\ ({\rm m}) \ ({\rm ^{o}C}) & ({\rm m}) \end{array}$	$v \left< \begin{array}{c} \langle P \\ v \\ (z \\ z \\ z \\ z \\ (z \\ z \\ z \\ z \\ z \\$	$\left. \begin{array}{cc} H \\ U \end{array} \right _{U} \left(\begin{array}{c} C_{U} \\ (m^{2} m^{2} m^{2} m^{2} m^{2} \end{array} \right)$	pН	[Al] _e	[Ca] _{ex}	[K] _{ex} mol _{eq} k	[Mg] _{ex}	[Na] _{ex}	[P] _{exch} (µg g ⁻¹)	WRB Soil Classification
HOM-01 15.344N 1.468W Savanna grassland	306 29.9 0.35	0.85 3	3.8 0.01	6.54	0.2	6.4	0.6	3.1	0.1	87	Rubic Arenosol (Dystric, Aridic)
HOM-02 15.335N 1.547W Savanna grassland	310 30.0 0.35	0.85 5	5.6 0.08	6.83	0.2	7.6	1.3	2.7	0.1	43	Rubic Arenosol (Dystric, Aridic)

S2: Mixed model output and diagnostics

Table S2.1 Estimates for the mixed effects model of Eqn. 1 for leaf mass per unit area (g m^{-2}).

Fixed Effect				
Parametric terms	Coefficient	S.E.	t	р
$\mu = \text{intercept: } \mathbb{F} \text{ dataset mean, } \langle \mathbb{F} \rangle$	95.8	3.8	25.39	0.0001
α = savanna - forest difference: $\langle S \rangle - \langle F \rangle$	16.6	4.9	3.39	0.0009
Smooth terms		d.f.	F	р
$s(P_{\Lambda})$		3.54	3.847	0.0064
Random effect	Variance con	mponent	Fractio	n of total
Level 2 variance				
$ au_0^2 = \operatorname{var}(U_{0\mathrm{S}})$	590.	5	0	.57
Level 2 variance				
$\sigma_0^2 = \operatorname{var}(R_{i,S})$	436.8	8	0	.43

Table S2.2 Estimates for the mixed effects model of Eqn. 1 for leaf nitrogen (mg g⁻¹).

Fixed Effect				
Parametric terms	Coefficient	S.E.	t	р
$\mu = \text{intercept: } \mathbb{F} \text{ dataset mean, } \langle \mathbb{F} \rangle$	24.40	0.68	35.86	< 0.0001
α = savanna - forest difference: $\langle S \rangle - \langle F \rangle$	-6.21	0.88	-7.09	< 0.0001
Smooth terms		d.f.	F	р
$s(P_{\rm A})$		5.37	18.98	< 0.0001
Random effect	Variance cor	nponent	Fraction	n of total
Level 2 variance				
$\tau_0^2 = \operatorname{var}(U_{0S})$	16.72	2	0	.70
0 (057				
Level 2 variance				
$\sigma_0^2 = \operatorname{var}(R_{i,S})$	6.92		0	.30

Table S2.3 Estimates for the mixed effects model of Eqn. 1 for leaf phosphorus (mg g⁻¹).

Fixed Effect				
Parametric terms	Coefficient	S.E.	t	р
$\mu = \text{intercept: } \mathbb{F} \text{ dataset mean, } \langle \mathbb{F} \rangle$	1.180	0.058	20.23	< 0.0001
α = savanna - forest difference: $\langle S \rangle - \langle F \rangle$	0.054	0.074	0.72	0.475
Smooth terms		d.f.	F	р
$s(P_{\rm A})$		3.40	2.71	0.038

Random effect	Variance component	Fraction of total
Level 2 variance		
$ au_0^2 = \operatorname{var}(U_{0\mathrm{S}})$	0.104	0.43
Level 2 variance		
$\sigma_0^2 = \operatorname{var}(R_{i,S})$	0.139	0.57

Table S2.4 Estimates for the mixed effects model of Eqn. 1 for leaf carbon (mg g^{-1}).

Fixed Effect				
Parametric terms	Coefficient	S.E.	t	р
$\mu = \text{intercept: } \mathcal{F} \text{dataset mean, } \langle \mathcal{F} \rangle$	455.3	3.1	147.0	< 0.0001
α = savanna - forest difference: $\langle S \rangle - \langle F \rangle$	13.6	3.9	-3.46	< 0.0001
Smooth terms		d.f.	F	р
$s(P_{\rm A})$		1.00	14.36	0.0002
Random effect	Variance cor	nponent	Fractio	n of total
Level 2 variance				
$ au_0^2 = \operatorname{var}(U_{0\mathrm{S}})$	309.1	l	0	.52
Level 2 variance				
$\sigma_0^2 = \operatorname{var}(R_{i,S})$	277.9)	0	.48

Table S2.5 Estimates for the mixed effects model of Eqn. 1 for leaf potassium (mg g^{-1}).

Fixed Effect				
Parametric terms	Coefficient	S.E.	t	р
$\mu = \text{intercept: } \mathbb{F} \text{ dataset mean, } \langle \mathbb{F} \rangle$	8.49	0.37	22.83	< 0.0001
α = savanna - forest difference: $\langle S \rangle - \langle F \rangle$	-2.31	0.47	-4.91	< 0.0001
Smooth terms		d.f.	F	р
$s(P_{\rm A})$		1.00	70.73	< 0.0001
Random effect	Variance cor	nponent	Fraction	n of total
Level 2 variance				
$ au_0^2 = \operatorname{var}(U_{0\mathrm{S}})$	5.54		0	.55
Level 2 variance				
$\sigma_0^2 = \operatorname{var}(R_{i,S})$	4.45		0	.45

Table S2.6 Estimates for the mixed effects model of Eqn. 1 for leaf magnesium (mg g^{-1}).

Fixed Effect				
Parametric terms	Coefficient	S.E.	t	р
$\mu = \text{intercept: } \mathbb{F} \text{ dataset mean, } \langle \mathbb{F} \rangle$	3.64	0.19	19.02	< 0.0001
α = savanna - forest difference: $\langle S \rangle - \langle F \rangle$	-0.19	0.24	-0.81	0.421
Smooth terms		d.f.	F	р
$s(P_{\rm A})$		2.4	4.41	0.0086
Random effect	Variance con	nponent	Fractio	n of total

Level 2 variance		
$ au_0^2 = \operatorname{var}(U_{0\mathrm{S}})$	1.31	0.49
Level 2 variance		
$\sigma_0^2 = \operatorname{var}(R_{i,S})$	1.33	0.51

Table S2.7 Estimates for the mixed effects model of Eqn. 1 for leaf calcium (mg g⁻¹).

Fixed Effect				
Parametric terms	Coefficient	S.E.	t	р
$\mu = \text{intercept: } \mathbb{F} \text{ dataset mean, } \langle \mathbb{F} \rangle$	14.77	0.81	18.21	< 0.0001
α = savanna - forest difference: $\langle S \rangle - \langle F \rangle$	-1.86	1.02	-1.81	0.0705
Smooth terms		d.f.	F	р
$S(P_{\rm A})$		1.00	3.72	0.0548
	T 7 •		.	6 1
Random effect	Variance coi	mponent	Fractio	n of total
Level 2 variance				
$ au_0^2 = \operatorname{var}(U_{0\mathrm{S}})$	23.53	3	0	0.51
Level 2 variance				
$\sigma_0^2 = \operatorname{var}(R_{i,S})$	21.72	2	0	.49

S3. Multivariate analysis of variance

Table S3.1. Two-way non-parametric MANOVA on Bray-Curtis distances for leaf trait characteristics compared for forest *vs.* savanna trees (affiliation) and the four initial categories of leaf habit (evergreen, deciduous, semi-deciduous and brevi-deciduous).

Source	d.f.	SS	MS	F	Þ
Affiliation	1	0.2277	0.2277	7.973	0.001
Leaf Habit	3	0.1465	0.0488	1.710	0.080
Residual	154	4.3988	0.0286		
Total	158	4.7730			

S4: Principal Component analysis

Table S4.1. Summary of the Principal Components Analysis of the correlation matrix forthe derived environmental effects on observed foliar traits.

Variable	Y_1	\boldsymbol{Y}_2	\boldsymbol{Y}_3	${{Y}_{4}}$	\overline{Y}_5	${\boldsymbol{Y}}_6$
$\ell M_{\rm a}$	0.465	-0.068	0.208	-0.269	-0.800	-0.152
$\ell[N]_m$	-0.357	-0.631	-0.399	-0.303	-0.066	-0.466
$\ell[P]_m$	-0.367	-0.643	0.292	-0.235	0.339	0.443
$\ell[C]_m$	0.381	-0.210	0.785	0.321	-0.051	-0.297
$\ell[K]_m$	-0.471	-0.188	-0.131	0.188	-0.484	0.675
$\ell[Mg]]_m$	-0.392	0.322	0.279	-0.801	0.060	0.137
Eigenvalue	2.00	0.94	0.73	0.63	0.36	0.26