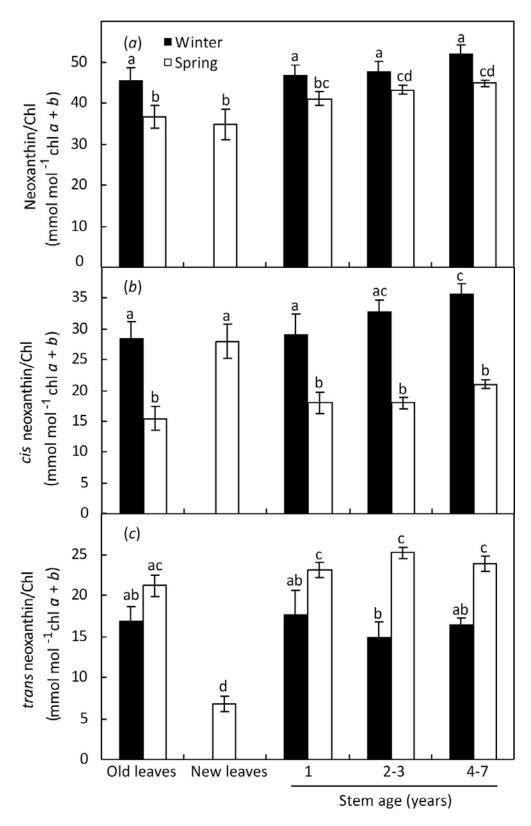

Supplementary Material

Does age matter under winter photoinhibitory conditions? A case study in stems and leaves of European mistletoe (*Viscum album*)


Fátima Míguez^{A,B}, Beatriz Fernández-Marín^A, Antonio Hernández^A, José Maria Becerril^A and José Ignacio García-Plazaola^A

^ADepartment of Plant Biology and Ecology. University of Basque country (UPV/EHU) Apdo 644. 48080 Bilbao, Spain.

^BCorresponding author. Email: fatimamiguezcano@gmail.com

Fig. S1. Pigment and tocopherol composition in leaves and stems of mistletoe during winter and spring: (*a*) Chl a+b (*b*) β-carotene/Chl (*c*) Chl a/b (*d*) Total tocopherol/Chl. Each bar represents the mean \pm s.e. (in winter, $n \ge 4$; in spring $n \ge 9$). The letters above the columns are indicative of significant differences among organs and different stem ages in both seasons (P < 0.05).

Fig. S2. Neoxanthin content in leaves and stems of mistletoe during winter and spring: (a) total neoxanthin/Chl (b) cis-neoxanthin/Chl (c) trans-neoxanthin/Chl. Values are the mean \pm s.e. (in winter, $n \ge 4$; in spring $n \ge 9$). The letters above the columns are indicative of significant differences among organs and different stem ages in both seasons (P < 0.05).