Supplementary Material

In vivo epidermal UV-A absorbance is induced by sunlight and protects *Soldanella alpina* leaves from photoinhibition

Constance Laureau^A, Sylvie Meyer^{A,B}, Xavier Baudin^C, Christophe Huignard^A and Peter Streb^{A,D}

^ALaboratoire Ecologie Systématique et Evolution, Université Paris-Sud, UMR-CNRS 8079, Bât. 362, F-91405 Orsay, France.

^BUniv Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France.

^cPlateforme de Recherche ImagoSeine, Institut Jacques Monod, UMR 7592 CNRS, INSERM (Institut National de la Santé et de la Recherche Médicale), Université Paris Diderot-Paris7, Bât. Buffon, F-75013 Paris, France.

^DCorresponding author. Email: peter.streb@u-psud.fr

Fig. S1. Transmission spectrum of the green nylon filter between 300 and 700 nm. The filter was used to reduce incident light intensity in *S. alpina* leaves at the natural growing site.

Fig. S2. Correlation between total leaf-UV-A-absorption DA₃₇₅ and LMA in leaves of *S. alpina* collected from different growing sites and grown under different conditions The correlation coefficient was $r^2 = 0.979$. One point corresponds to the mean of $n \ge 4$ leaves.

Fig. S3. Relationship between total DA_{322} and total DA_{375} for leaves grown in Alps with a high (HA), a low (LA) and intermediary (IA) UV-A-absorbance and leaves grown in the growth chamber (GC). One point corresponds to one leaf. Regression equations and correlation coefficient are indicated.