Supplementary Material

In vivo epidermal UV-A absorbance is induced by sunlight and protects Soldanella alpina leaves from photoinhibition

Constance Laureau\(^A\), Sylvie Meyer\(^A\(^B\), Xavier Baudin\(^C\), Christophe Huignard\(^A\) and Peter Streb\(^A\(^D\)

\(^A\)Laboratoire Ecologie Systématique et Evolution, Université Paris-Sud, UMR-CNRS 8079, Bât. 362, F-91405 Orsay, France.

\(^B\)Univ Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France.

\(^C\)Plateforme de Recherche ImagoSeine, Institut Jacques Monod, UMR 7592 CNRS, INSERM (Institut National de la Santé et de la Recherche Médicale), Université Paris Diderot-Paris7, Bât. Buffon, F-75013 Paris, France.

\(^D\)Corresponding author. Email: peter.streb@u-psud.fr

Fig. S1. Transmission spectrum of the green nylon filter between 300 and 700 nm. The filter was used to reduce incident light intensity in S. alpina leaves at the natural growing site.
Fig. S2. Correlation between total leaf-UV-A-absorption DA_{375} and LMA in leaves of *S. alpina* collected from different growing sites and grown under different conditions. The correlation coefficient was $r^2 = 0.979$. One point corresponds to the mean of $n \geq 4$ leaves.
Fig. S3. Relationship between total DA$_{322}$ and total DA$_{375}$ for leaves grown in Alps with a high (HA), a low (LA) and intermediary (IA) UV-A-absorbance and leaves grown in the growth chamber (GC). One point corresponds to one leaf. Regression equations and correlation coefficient are indicated.