Supplementary Material

The role of oxidative stress in determining the level of viability of black poplar (*Populus nigra*) seeds stored at different temperatures

Ewa Marzena Kalemba^{A,B}, Jan Suszka^A and Ewelina Ratajczak^A

^AInstitute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.

^BCorresponding author. Email: kalemba@man.poznan.pl

Table S1. Fatty acids composition in black poplar (Populus nigra L.) seeds

The percentage of palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and α -linolenic acid (C18:3) determined using a GLC-10 FAME (Supelco) quantitative mix and heptadecanoic acid (17:0) as the internal standard

	Fatty acid	Content [% ± s.e.]	
C16:0	Palmitic acid	24.61 ± 0.31	
C18:0	Steraic acid	9.72 ± 0.21	
C18:1	Oleic acid	12.79 ± 0.19	
C18:2	Linoleic acid	35.82 ± 0.19	
C18:3	α-Linolenic acid	17.21 ± 0.17	

Table S2. Phospholipids: phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phosphatidic acid (PA) analyzed in black poplar (*Populus nigra* L.) seeds stored for 3 months, 1 year and 2 years at LN, -20°C, -10°C, -3°C and 3°C

Data represent the mean \pm s.e. of six independent replicates. The Kruskal–Wallis test was used to compare storage temperature treatment. Data marked with the same letter are not statistically significant according to the multiple range test (*P*≤0.05)

	PI	PC	PG	PE	PA
3 months at:					
LN	29.51 ± 2.55	43.32 ± 2.46	21.06 ± 4.00	32.54 ± 2.40	36.89 ± 2.14
−20 °C	28.58 ± 1.52	48.18 ± 1.07	19.38 ± 1.53	24.21 ± 2.91	23.07 ± 3.05
−10 °C	20.91 ± 2.45	29.82 ± 2.18	9.44 ± 0.15	18.92 ± 2.24	15.43 ± 2.28
−3 °C	13.91 ± 2.32	25.67 ± 2.39	7.21 ± 0.88	16.34 ± 0.92	16.51 ± 1.62
+3 °C	25.61 ± 2.89	33.58 ± 4.67	15.39 ± 0.65	21.72 ± 0.82	17.11 ± 0.90
	P = 0.018	P = 0.022	P = 0.013	P = 0.283	P = 0.033
1 year at:					
LN	19.52 ± 0.41	37.16 ± 3.20	16.71 ± 1.18	16.92 ± 5.18	24.00 ± 1.92
−20 °C	16.45 ± 1.14	25.82 ± 2.32	13.96 ± 2.67	18.99 ± 5.59	23.09 ± 0.79
−10 °C	12.49 ± 4.03	28.75 ± 0.37	12.76 ± 0.53	16.43 ± 6.27	23.66 ± 0.40
−3 °C	12.13 ± 0.25	12.96 ± 1.27	14.37 ± 0.12	23.45 ± 1.72	27.67 ± 1.65
+3 °C	19.23 ± 0.79	17.96 ± 2.93	2.93 ± 0.29	15.07 ± 1.74	9.27 ± 0.48
	P = 0.081	P = 0.017	P = 0.454	P = 0.331	P = 0.062
2 years at:					
LN	14.81 ± 2.01	24.26 ± 3.39	9.58 ± 0.74	16.61 ± 2.85	12.90 ± 2.10
−20 °C	18.93 ± 2.52	27.40 ± 1.53	16.66 ± 2.88	26.37 ± 6.14	19.50 ± 2.43
-10 °C	18.36 ± 3.03	41.20 ± 3.59	16.15 ± 2.57	23.11 ± 2.46	20.51 ± 1.33
−3 °C	27.91 ± 4.89	30.77 ± 9.88	15.19 ± 1.52	21.69 ± 5.02	30.99 ± 8.21
+3 °C	23.29 ± 1.79	39.54 ± 2.30	14.04 ± 1.22	38.82 ± 9.41	25.51 ± 1.15
	P = 0.011	P = 0.221673	P = 0.029	P = 0.092	P = 0.0051

Table S3. Pearson correlation coefficient calculated between germination capacity of black poplar seeds (stored for 3 months, 1 year and 2 years; Suszka *et al.* 2014) and superoxide anionradical ($O_2^{-\bullet}$), hydrogen peroxide (H₂O₂), protein carbonylation, electrolyte leakage, fatty acids including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and α -linolenic acid (C18:3), phospholipids including phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phosphatidic acid (PA), reduced (GSH) and oxidized (GSSG) form of glutathione and their redox potential (E_{GSSG/2GSH}), reduced (AsA) and oxidized (DHA) form of ascorbate and their redox potential (E_{ASA/DHA}), enzymes of the ascorbate-glutathione cycle including ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR)

Germination Seeds stored for 3 months Seeds stored for 1 year Seeds stored for 2 years $0_2^{-\bullet}$ R = 0.4745R = -0.8883R = -0.9373P = 0.061842P < 0.00001*P* < 0.00001 H_2O_2 R = -0.4509R = -0.3619R = -0.7855P = 0.091628P = 0.185004P = 0.00052R = -0.5218R = -0.9227R = -0.5901Protein P = 0.046431*P* < 0.00001 P = 0.020575carbonylation Electrolyte R = 0.3847R = 0.7110R = -0.9761P = 0.156814P = 0.002962*P* < 0.00001 leakage C16:0 R = -0.4005R = 0.7085R = 0.7526P = 0.139055P = 0.003112P = 0.001205C18:0 R = 0.2425R = 0.4750R = 0.7669P = 0.38385P = 0.073571P = 0.00085C18:1 R = -0.8358R = 0.7352R = 0.7500P = 0.000104P = 0.00179P = 0.001284R = 0.7971C18:2 R = -0.4904R = 0.8723P = 0.063465P = 0.000496P = 0.000373C18:3 R = -0.6626R = 0.8940R = 0.7804P = 0.222972P = 6.2 E- 05P = 0.000579ΡI R = -0.1450R = 0.7276R = 0.3011P = 0.002108P = 0.606133P = 0.275473PC R = -0.4874R = 0.7085R = 0.6865P = 0.06535P = 0.003112P = 0.004705R = 0.8558PG R = -0.1405R = 0.8831P = 0.617472P = 1.3 E-05P = 4.7 E- 05PE R = 0.031R = 0.7578R = 0.3908P = 0.91267P = 0.001064P = 0.149788PA R = 0.0012R = 0.8474R = 0.8232P = 0.996614P = 6.7 E- 05P = 0.000163GSH R = 0.7181R = 0.6530R = 0.5712P = 0.002568P = 0.008306P = 0.026137GSSG R = 0.5037 R = 0.4117R = 0.5226P = 0.045645P = 0.055582P = 0.127324R = -0.7584R = 0.0871R = -0.5265E_{GSSG/2GSH} P = 0.04377P = 0.001049P = 0.757581AsA R = 0.0421R = -0.5586R = 0.6831P = 0.005001P = 0.881576P = 0.030432DHA R = 0.2803R = -0.8862R = -0.6236P = 0.31156P = 1.1E-05P = 0.012989R = 0.5830R = -0.7611R = -0.8129E_{DHA/AsA} P = 0.022546P = 0.000982P = 0.000229APX R = 0.5373R = -0.8230R = -0.8962P = 0.038875P = 0.000164*P* < 0.00001 GR R = -0.5211R = -0.8606R = -0.8363P = 0.046381*P* = 3.8E-05 P = 0.000102R = 0.5544DHAR R = -0.7702R = -0.8333P = 0.000114P = 0.031976P = 0.000781**MDHAR** R = 0.5634R = -0.8060R = -0.8182P = 0.028737P = 0.000285P = 0.000193

P-value was calculated from the R-score at 0.05 significance level. Strong correlation coefficient is indicated with bolded type

Table S4. Pearson correlation coefficient calculated between the ROS content: (*a*) superoxide anionradical $(O_2^{-\bullet})$, (*b*) hydrogen peroxide (H_2O_2) and parameters that are thought to be affected by ROS: protein carbonylation, electrolyte leakage, fatty acids including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and α -linolenic acid (C18:3), phospholipids including phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phosphatidic acid (PA), reduced (GSH) and oxidized (GSSG) form of glutathione and their redox potential (E_{GSSG/2GSH}), reduced (AsA) and oxidized (DHA) form of ascorbate and their redox potential (E_{AsA/DHA}), enzymes of the ascorbate-glutathione cycle including ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (MDHAR)

No.	Table S4a	02-		
		Seeds stored for 3 months	Seeds stored for 1 year	seeds stored for 2 years
1.	Protein	R = -0.1027	R = 0.6692	R = 0.7951
	carbonylation	P = 0.715698	P = 0.006364	P = 0.000396
2.	Electrolyte	R = 0.4698	R = -0.4171	R = 0.8842
	leakage	P = 0.07723	P = 0.121918	P = 1.2 E-05
3.	C16:0	R = 0.1754	R = -0.7651	R = -0.8272
		P = 0.531797	P = 0.000889	P = 0.000142
4.	C18:0	R = 0.9595	R = -0.7011	R = -0.7549
		<i>P</i> < 0.00001	P = 0.00359	P = 0.001024
5.	C18:1	R = -0.3239	R = -0.8591	R = -0.7544
		P = 238909	P = 4.1 E-05	P = 001155
6.	C18:2	R = 0.9816	R = -0.8652	R = -0.8216
		<i>P</i> < 0.00001	P = 3.1 E - 05	P = 0.000172
7.	C18:3	R = -0.1459	R = -0.6339	R = -0.8100
		P = 0.603975	P = 0.011161	P = 0.000252
8.	PI	R = -0.6690	R = -0.0267	R = -0.1804
		P = 0.006386	P = 0.924749	P = 0.519975
9.	PC	R = -0.8068	R = -0.5855	R = -0.5788
		P = 0.000278	P = 0.021837	P = 0.023778
10.	PG	R = -0.8101	R = -0.9860	R = -0.9013
		P = 0.000251	<i>P</i> < 0.00001	<i>P</i> < 0.00001
11.	PE	R = -0.6217	R = -0.4661	R = -0.7745
		P = 0.1335	P = 0.079912	P = 0.000699
12.	PA	R = -0.6161	R = -0.6171	R = -0.9148
		P = 0.01446	P = 0.014256	<i>P</i> < 0.00001
13.	GSH	R = -0.1311	R = -0.0868	R = 0.4500
		P = 0.641418	P = 0.758393	P = 0.092357
14.	GSSG	R =0.2477	R = -0.3345	R =0.0205
		P = 0.373413	P = 0.222991	P = 0.942192
15.	E _{GSSG/2GSH}	R = 0.0382	R = 0.8123	R = 0.7875
		P = 0.892485	P = 0.000234	P = 0.000491
16.	AsA	R = -0.8366	R = 0.2706	R = -0.0314
		P = 0.000101	P = 0.329326	P = 0.911547
17.	DHA	R = -0.9131	R = 0.9601	R = -0.5983
		P <0.00001	<i>P</i> < 0.00001	P = 0.018466
18.	E _{DHA/AsA}	R = -0.8507	R = 0.8850	R = 0.7947
		<i>P</i> = 5.8E-05	P = 1.2 E-05	P = 0.0004
19.	GR	R = -0.2417	R = 0.8922	R = 0.8942
		P = 0.385447	<i>P</i> < 0.00001	<i>P</i> < 0.00001
20.	APX	R = -0.4575	R = 0.8547	R = 0.9356
		P = 0.086401	P = 4.9 E-05	<i>P</i> < 0.00001
21.	DHAR	R = -0.4552	R = 0.8882	R = 0.8742
		P = 0.088198	<i>P</i> < 0.00001	<i>P</i> = 2E-05
22.	MDHAR	R = -0.4524	R = 0.8606	R = 0.8946
		P = 0.090421	P = 3.8 E-05	P < 0.00001

P-value was calculated from the R-score at 0.05 significance level. Strong correlation coefficient is indicated with bolded type

No.	Table S4b	H ₂ O ₂		
		Seeds stored for 3 months	Seeds stored for 1 year	Seeds stored for 2 years
1.	Protein	R = -0.4839	R = 0.1920	R = 0.6331
	carbonylation	P = 0.067599	P = 0.493014	P = 0.011295
2.	Electrolyte	R = -0.2257	R = -0.2592	R = 0.7096
	leakage	P = 0.418622	P = 0.350888	P = 0.00045
3.	C16:0	R = -0.1187	R = -0.5308	R = -0.8841
		P = 0.67351	P = 0.041769	P = 1.2 E-05
4.	C18:0	R = -0.4851	R = -0.4518	R = 0.9981
		P = 0.066822	P = 0.090902	<i>P</i> < 0.00001
5.	C18:1	R = -0.4133	R = -0.6792	R = 0.9815
		P = 125706	P = 005357	<i>P</i> < 0.00001
6.	C18:2	R = -0.3295	R = -0.5766	R = 0.9746
		P = 0.230414	P = 0.024444	<i>P</i> < 0.00001
7.	C18:3	R = -0.2473	R = -0.4029	R = -0.9471
		P = 0.37421	P = 0.136482	<i>P</i> < 0.00001
8.	PI	R = 0.3031	R = -0.1986	R = -0.7582
		P = 0.272138	P = 0.477297	P = 0.001054
9.	PC	R = 0.5757	R = -0.3470	R = -0.9289
		P = 0.02472	P = 0.205099	<i>P</i> < 0.00001
10.	PG	R = 0.4381	R = -0.5982	R = -0.8668
		P = 0.102393	P = 0.01848	P = 2.9 E-05
11.	PE	R = 0.1068	R = -0.6045	R = -0.7743
		P = 0.704809	P = 0.016984	P = 0.000702
12.	PA	R = 0.0091	R = -0.1134	R = -0.4390
		P = 0.974323	P = 0.687392	P = 0.101609
13.	GSH	R = -0.1537	R = 0.2779	R = 0.6329
		P = 0.584446	P = 0.315926	P = 0.011329
14.	GSSG	R = -0.2148	R = -0.0511	R =0.6046
		P = 0.442021	P = 0.85648	P = 0.016961
15.	E _{GSSG/2GSH}	R = 0.1272	R = -0.4623	R = 0.4313
		P = 0.651451	P = 0.082735	P = 0.108458
16.	AsA	R = 0.5988	R = -0.5677	R = -0.0850
		P = 0.018343	P = 0.027281	P = 0.76327
17.	DHA	R = 0.5389	R = 0.3612	R = -0.5420
		P = 0.038486	P = 0.185918	P = 0.036878
18.	E _{DHA/AsA}	R = 0.4430	R = 0.2353	R = 0.4208
		P = 0.098173	P = 0.398557	P = 0.118306
19.	GR	R = 0.7163	R = 0.7606	R = 0.6398
		P = 0.002664	P = 0.000994	P = 0.010208
20.	APX	R = -0.3083	R = 0.7579	R = 0.6312
		P = 0.263583	P = 0.001062	P = 0.011619
21.	DHAR	R = 0.2861	$\mathbf{R} = 0.8723$	R = 0.6169
		P = 0.301255	P = 2.2 E-05	P = 0.014297
22.	MDHAR	R = 0.2879	R = 0.7991	R = 0.6207
	1	P = 0.298089	P = 0.000352	P = 0.013543