Supplementary Material

The role of oxidative stress in determining the level of viability of black poplar (Populus nigra) seeds stored at different temperatures

Ewa Marzena Kalemba ${ }^{\text {A,B }}$, Jan Suszka ${ }^{\text {A }}$ and Ewelina Ratajczak ${ }^{\text {A }}$
${ }^{\text {A }}$ Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
${ }^{\text {B }}$ Corresponding author. Email: kalemba@man.poznan.pl

Table S1. Fatty acids composition in black poplar (Populus nigra L.) seeds
The percentage of palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and α-linolenic acid (C18:3) determined using a GLC-10 FAME (Supelco) quantitative mix and heptadecanoic acid (17:0) as the internal standard

Fatty acid		Content [\% \pm s.e.]
C16:0	Palmitic acid	24.61 ± 0.31
C18:0	Steraic acid	9.72 ± 0.21
C18:1	Oleic acid	12.79 ± 0.19
C18:2	Linoleic acid	35.82 ± 0.19
C18:3	α-Linolenic acid	17.21 ± 0.17

Table S2. Phospholipids: phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phosphatidic acid (PA) analyzed in black poplar (Populus nigra L.) seeds stored for 3 months, 1 year and 2 years at $\mathrm{LN},-20^{\circ} \mathrm{C},-10^{\circ} \mathrm{C},-3^{\circ} \mathrm{C}$ and $3^{\circ} \mathrm{C}$

Data represent the mean \pm s.e. of six independent replicates. The Kruskal-Wallis test was used to compare storage temperature treatment. Data marked with the same letter are not statistically significant according to the multiple range test $(P \leq 0.05)$

	PI	PC	PG	PE	PA
3 months at:					
LN	29.51 ± 2.55	43.32 ± 2.46	21.06 ± 4.00	32.54 ± 2.40	36.89 ± 2.14
$-20{ }^{\circ} \mathrm{C}$	28.58 ± 1.52	48.18 ± 1.07	19.38 ± 1.53	24.21 ± 2.91	23.07 ± 3.05
$-10{ }^{\circ} \mathrm{C}$	20.91 ± 2.45	29.82 ± 2.18	9.44 ± 0.15	18.92 ± 2.24	15.43 ± 2.28
$-3^{\circ} \mathrm{C}$	13.91 ± 2.32	25.67 ± 2.39	7.21 ± 0.88	16.34 ± 0.92	16.51 ± 1.62
$+3^{\circ} \mathrm{C}$	25.61 ± 2.89	33.58 ± 4.67	15.39 ± 0.65	21.72 ± 0.82	17.11 ± 0.90
	$P=0.018$	$P=0.022$	$P=0.013$	$P=0.283$	$P=0.033$
1 year at:					
LN	19.52 ± 0.41	37.16 ± 3.20	16.71 ± 1.18	16.92 ± 5.18	24.00 ± 1.92
$-20{ }^{\circ} \mathrm{C}$	16.45 ± 1.14	25.82 ± 2.32	13.96 ± 2.67	18.99 ± 5.59	23.09 ± 0.79
$-10{ }^{\circ} \mathrm{C}$	12.49 ± 4.03	28.75 ± 0.37	12.76 ± 0.53	16.43 ± 6.27	23.66 ± 0.40
$-3^{\circ} \mathrm{C}$	12.13 ± 0.25	12.96 ± 1.27	14.37 ± 0.12	23.45 ± 1.72	27.67 ± 1.65
$+3{ }^{\circ} \mathrm{C}$	19.23 ± 0.79	17.96 ± 2.93	2.93 ± 0.29	15.07 ± 1.74	9.27 ± 0.48
	$P=0.081$	$P=0.017$	$P=0.454$	$P=0.331$	$P=0.062$
LN	14.81 ± 2.01	24.26 ± 3.39	9.58 ± 0.74	16.61 ± 2.85	12.90 ± 2.10
$-20{ }^{\circ} \mathrm{C}$	18.93 ± 2.52	27.40 ± 1.53	16.66 ± 2.88	26.37 ± 6.14	19.50 ± 2.43
$-10{ }^{\circ} \mathrm{C}$	18.36 ± 3.03	41.20 ± 3.59	16.15 ± 2.57	23.11 ± 2.46	20.51 ± 1.33
$-3^{\circ} \mathrm{C}$	27.91 ± 4.89	30.77 ± 9.88	15.19 ± 1.52	21.69 ± 5.02	30.99 ± 8.21
$+3{ }^{\circ} \mathrm{C}$	23.29 ± 1.79	39.54 ± 2.30	14.04 ± 1.22	38.82 ± 9.41	25.51 ± 1.15
	$P=0.011$	$P=0.221673$	$P=0.029$	$P=0.092$	$P=0.0051$

Table S3. Pearson correlation coefficient calculated between germination capacity of black poplar seeds (stored for 3 months, 1 year and 2 years; Suszka et al. 2014) and superoxide anionradical ($\mathrm{O}_{2}^{-\bullet}$), hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$, protein carbonylation, electrolyte leakage, fatty acids including palmitic acid (C16:0), stearic acid ($\mathrm{C} 18: 0$), oleic acid ($\mathrm{C} 18: 1$), linoleic acid ($\mathrm{C} 18: 2$) and α-linolenic acid ($\mathrm{C} 18: 3$), phospholipids including phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phosphatidic acid (PA), reduced (GSH) and oxidized (GSSG) form of glutathione and their redox potential ($E_{G S S G / 2 G S H}$), reduced (AsA) and oxidized (DHA) form of ascorbate and their redox potential ($E_{\text {AsA/DHA }}$), enzymes of the ascorbate-glutathione cycle including ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR)
P-value was calculated from the R-score at 0.05 significance level. Strong correlation coefficient is indicated with bolded type

	Germination		
	Seeds stored for 3 months	Seeds stored for 1 year	Seeds stored for 2 years
$\mathrm{O}_{2}{ }^{-}$	$\begin{gathered} \mathrm{R}=0.4745 \\ P=0.061842 \end{gathered}$	$\begin{aligned} & \mathbf{R}=-\mathbf{0 . 8 8 8 3} \\ & P<0.00001 \end{aligned}$	$\begin{aligned} & \mathbf{R}=-\mathbf{0 . 9 3 7 3} \\ & P<0.00001 \end{aligned}$
$\mathrm{H}_{2} \mathrm{O}_{2}$	$\begin{gathered} \mathrm{R}=-0.4509 \\ P=0.091628 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{R}=-0.3619 \\ P=0.185004 \end{gathered}$	$\begin{aligned} & \mathbf{R}=-\mathbf{0 . 7 8 5 5} \\ & P=0.00052 \\ & \hline \end{aligned}$
Protein carbonylation	$\begin{gathered} \hline \mathrm{R}=-0.5218 \\ P=0.046431 \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{R}=-\mathbf{0 . 9 2 2 7} \\ & P<0.00001 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{R}=-0.5901 \\ P=0.020575 \\ \hline \end{gathered}$
Electrolyte leakage	$\begin{gathered} \mathrm{R}=0.3847 \\ P=0.156814 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.7110 \\ P=0.002962 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{R}=-\mathbf{0 . 9 7 6 1} \\ & P<0.00001 \\ & \hline \end{aligned}$
C16:0	$\begin{gathered} \mathrm{R}=-0.4005 \\ P=0.139055 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.7085 \\ p=0 \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 5 2 6} \\ P=0.001205 \\ \hline \end{gathered}$
C18:0	$\begin{gathered} \mathrm{R}=0.2425 \\ P=0.38385 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.4750 \\ P=0.073571 \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=\mathbf{0 . 7 6 6 9} \\ P=0.00085 \\ \hline \end{gathered}$
C18:1	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 8 3 5 8} \\ P=0.000104 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{R}=0.7352 \\ P=0.00179 \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 5 0 0} \\ P=0.001284 \end{gathered}$
C18:2	$\begin{gathered} \mathrm{R}=-0.4904 \\ P=0.063465 \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 8 7 2 3} \\ P=0.000496 \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 9 7 1} \\ P=0.000373 \end{gathered}$
C18:3	$\begin{gathered} \hline \mathrm{R}=-0.6626 \\ P=0.222972 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=\mathbf{0 . 8 9 4 0} \\ P=6.2 \mathrm{E}-05 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 8 0 4} \\ P=0.000579 \\ \hline \end{gathered}$
PI	$\begin{gathered} \hline \mathrm{R}=-0.1450 \\ P=0.606133 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.3011 \\ P=0.275473 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.7276 \\ P=0.002108 \\ \hline \end{gathered}$
PC	$\begin{aligned} & \mathrm{R}=-0.4874 \\ & P=0.06535 \end{aligned}$	$\begin{gathered} \mathrm{R}=0.7085 \\ P=0.003112 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.6865 \\ P=0.004705 \\ \hline \end{gathered}$
PG	$\begin{gathered} \mathrm{R}=-0.1405 \\ P=0.617472 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=\mathbf{0 . 8 8 3 1} \\ P=1.3 \mathrm{E}-05 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=\mathbf{0 . 8 5 5 8} \\ P=4.7 \mathrm{E}-05 \\ \hline \end{gathered}$
PE	$\begin{gathered} \mathrm{R}=0.031 \\ P=0.91267 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 5 7 8} \\ P=0.001064 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.3908 \\ P=0.149788 \\ \hline \end{gathered}$
PA	$\begin{gathered} \mathrm{R}=0.0012 \\ P=0.996614 \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=\mathbf{0 . 8 4 7 4} \\ P=6.7 \mathrm{E}-05 \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 8 2 3 2} \\ P=0.000163 \end{gathered}$
GSH	$\begin{gathered} \mathrm{R}=0.7181 \\ P=0.002568 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.6530 \\ P=0.008306 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.5712 \\ P=0.026137 \\ \hline \end{gathered}$
GSSG	$\begin{gathered} \mathrm{R}=0.5037 \\ P=0.055582 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.4117 \\ P=0.127324 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.5226 \\ P=0.045645 \\ \hline \end{gathered}$
$\mathbf{E}_{\text {GSSG/2GSH }}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 7 5 8 4} \\ P=0.001049 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.0871 \\ P=0.757581 \end{gathered}$	$\begin{aligned} & \mathrm{R}=-0.5265 \\ & P=0.04377 \\ & \hline \end{aligned}$
AsA	$\begin{gathered} \mathrm{R}=0.0421 \\ P=0.881576 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.5586 \\ P=0.030432 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.6831 \\ P=0.005001 \\ \hline \end{gathered}$
DHA	$\begin{gathered} \mathrm{R}=0.2803 \\ P=0.31156 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{R}=-\mathbf{0 . 8 8 6 2} \\ & P=1.1 \mathrm{E}-05 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{R}=-0.6236 \\ P=0.012989 \\ \hline \end{gathered}$
$\mathbf{E}_{\text {DHA/AsA }}$	$\begin{gathered} \mathrm{R}=0.5830 \\ P=0.022546 \end{gathered}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 7 6 1 1} \\ P=0.000982 \end{gathered}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 8 1 2 9} \\ P=0.000229 \end{gathered}$
APX	$\begin{gathered} \mathrm{R}=0.5373 \\ P=0.038875 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=-\mathbf{0 . 8 2 3 0} \\ P=0.000164 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{R}=-\mathbf{0 . 8 9 6 2} \\ & P<0.00001 \\ & \hline \end{aligned}$
GR	$\begin{gathered} \mathrm{R}=-0.5211 \\ P=0.046381 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{R}=-\mathbf{0 . 8 6 0 6} \\ & D=38 \mathrm{E}_{2} \mathrm{O} \end{aligned}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 8 3 6 3} \\ P=0.000102 \\ \hline \end{gathered}$
DHAR	$\begin{gathered} \mathrm{R}=0.5544 \\ P=0.031976 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=-\mathbf{0 . 7 7 0 2} \\ P=0.000781 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=-\mathbf{0 . 8 3 3 3} \\ P=0.000114 \end{gathered}$
MDHAR	$\begin{gathered} \mathrm{R}=0.5634 \\ P=0.028737 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 8 0 6 0} \\ P=0.000285 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 8 1 8 2} \\ P=0.000193 \\ \hline \end{gathered}$

Table S4. Pearson correlation coefficient calculated between the ROS content: (a) superoxide anionradical $\left(\mathrm{O}_{2}{ }^{-\bullet}\right)$, (b) hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ and parameters that are thought to be affected by ROS: protein carbonylation, electrolyte leakage, fatty acids including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and α-linolenic acid (C18:3), phospholipids including phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phosphatidic acid (PA), reduced (GSH) and oxidized (GSSG) form of glutathione and their redox potential ($\mathrm{E}_{\mathrm{GSSG} / 2 \mathrm{GSH}}$), reduced (AsA) and oxidized (DHA) form of ascorbate and their redox potential ($\mathrm{E}_{\mathrm{AsA} / \mathrm{DHA}}$), enzymes of the ascorbateglutathione cycle including ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR)
P-value was calculated from the R-score at 0.05 significance level. Strong correlation coefficient is indicated with bolded type

No.	Table S4a	$\mathrm{O}_{2}{ }^{-}$		
		Seeds stored for 3 months	Seeds stored for 1 year	seeds stored for 2 years
1.	Protein carbonylation	$\begin{gathered} \mathrm{R}=-0.1027 \\ P=0.715698 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.6692 \\ P=0.006364 \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 9 5 1} \\ P=0.000396 \\ \hline \end{gathered}$
2.	Electrolyte leakage	$\begin{gathered} \mathrm{R}=0.4698 \\ P=0.07723 \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.4171 \\ P=0.121918 \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 8 8 4 2} \\ P=1.2 \mathrm{E}-05 \\ \hline \end{gathered}$
3.	C16:0	$\begin{gathered} \mathrm{R}=0.1754 \\ P=0.531797 \end{gathered}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 7 6 5 1} \\ P=0.000889 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 8 2 7 2} \\ P=0.000142 \\ \hline \end{gathered}$
4.	C18:0	$\begin{gathered} \mathbf{R}=\mathbf{0 . 9 5 9 5} \\ P<0.00001 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{R}=-0.7011 \\ & P=0.00359 \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 7 5 4 9} \\ P=0.001024 \\ \hline \end{gathered}$
5.	C18:1	$\begin{gathered} \mathrm{R}=-0.3239 \\ P=238909 \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{R}=\mathbf{0 . 8 5 9 1} \\ & P=4.1 \mathrm{E}-05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{R}=-\mathbf{0 . 7 5 4 4} \\ & P=001155 \\ & \hline \end{aligned}$
6.	C18:2	$\begin{gathered} \hline \mathbf{R}=\mathbf{0 . 9 8 1 6} \\ P<0.00001 \end{gathered}$	$\begin{aligned} & \hline \mathbf{R}=-\mathbf{0 . 8 6 5 2} \\ & P=3.1 \mathrm{E}-05 \end{aligned}$	$\begin{aligned} & \hline \mathbf{R}=\mathbf{- 0 . 8 2 1 6} \\ & P=0 \end{aligned}$
7.	C18:3	$\begin{gathered} \mathrm{R}=-0.1459 \\ P=0.603975 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.6339 \\ P=0.011161 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 8 1 0 0} \\ P=0.000252 \\ \hline \end{gathered}$
8.	PI	$\begin{gathered} \mathrm{R}=-0.6690 \\ P=0.006386 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.0267 \\ P=0.924749 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.1804 \\ P=0.519975 \\ \hline \end{gathered}$
9.	PC	$\begin{gathered} \hline \mathbf{R}=-\mathbf{0 . 8 0 6 8} \\ P=0.000278 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{R}=-0.5855 \\ P=0.021837 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.5788 \\ P=0.023778 \\ \hline \end{gathered}$
10.	PG	$\begin{gathered} \hline \mathbf{R}=\mathbf{0 . 8 1 0 1} \\ P=0.000251 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-\mathbf{0 . 9 8 6 0} \\ P<0.00001 \end{gathered}$	$\begin{aligned} & \mathbf{R}=-\mathbf{0 . 9 0 1 3} \\ & P<0.00001 \\ & \hline \end{aligned}$
11.	PE	$\begin{gathered} \mathrm{R}=-0.6217 \\ P=0.1335 \end{gathered}$	$\begin{aligned} & \mathrm{R}=-0.4661 \\ & P=0.079912 \end{aligned}$	$\begin{aligned} & \mathbf{R}=-\mathbf{0 . 7 7 4 5} \\ & P=0.000699 \end{aligned}$
12.	PA	$\begin{aligned} & \hline \mathrm{R}=-0.6161 \\ & P=0.01446 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}=-0.6171 \\ & P=0.014256 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{R}=-\mathbf{0 . 9 1 4 8} \\ & P<0.00001 \\ & \hline \end{aligned}$
13.	GSH	$\begin{gathered} \mathrm{R}=-0.1311 \\ P=0.641418 \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.0868 \\ P=0.758393 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.4500 \\ P=0.092357 \end{gathered}$
14.	GSSG	$\begin{gathered} \mathrm{R}=0.2477 \\ P=0.373413 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.3345 \\ P=0.222991 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.0205 \\ P=0.942192 \end{gathered}$
15.	$\mathbf{E}_{\text {GSSG/2GSH }}$	$\begin{gathered} \mathrm{R}=0.0382 \\ P=0.892485 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=\mathbf{0 . 8 1 2 3} \\ P=0.000234 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 8 7 5} \\ P=0.000491 \\ \hline \end{gathered}$
16.	AsA	$\begin{aligned} & \mathbf{R}=-\mathbf{0 . 8 3 6 6} \\ & P=0.000101 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{R}=0.2706 \\ P=0.329326 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{R}=-0.0314 \\ & P=0.911547 \\ & \hline \end{aligned}$
17.	DHA	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 9 1 3 1} \\ P<0.00001 \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=\mathbf{0 . 9 6 0 1} \\ P<0.00001 \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.5983 \\ P=0.018466 \end{gathered}$
18.	$\mathbf{E}_{\text {DHA/AsA }}$	$\begin{aligned} & \mathbf{R}=-\mathbf{0 . 8 5 0 7} \\ & P=5.8 \mathrm{E}-05 \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 8 8 5 0} \\ P=1.2 \mathrm{E}-05 \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{R}=\mathbf{0 . 7 9 4 7} \\ & P=0.0004 \\ & \hline \end{aligned}$
19.	GR	$\begin{aligned} & \hline \mathrm{R}=-0.2417 \\ & P=0.385447 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{R}=\mathbf{0 . 8 9 2 2} \\ & P<0.00001 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathbf{R}=\mathbf{0 . 8 9 4 2} \\ P<0.00001 \\ \hline \end{gathered}$
20.	APX	$\begin{aligned} & \hline \mathrm{R}=-0.4575 \\ & P=0.086401 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{R}=\mathbf{0 . 8 5 4 7} \\ & P=4.9 \mathrm{E}-05 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{R}=\mathbf{0 . 9 3 5 6} \\ & P<0.00001 \\ & \hline \end{aligned}$
21.	DHAR	$\begin{aligned} & \mathrm{R}=-0.4552 \\ & P=0.088198 \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 8 8 8 2} \\ P<0.00001 \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{R}=\mathbf{0 . 8 7 4 2} \\ & P=2 \mathrm{E}-05 \\ & \hline \end{aligned}$
22.	MDHAR	$\begin{aligned} & \mathrm{R}=-0.4524 \\ & P=0.090421 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{R}=\mathbf{0 . 8 6 0 6} \\ & P=3.8 \mathrm{E}-05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{R}=\mathbf{0 . 8 9 4 6} \\ & P<0.00001 \\ & \hline \end{aligned}$

No.	Table S4b	$\mathrm{H}_{2} \mathrm{O}_{2}$		
		Seeds stored for 3 months	Seeds stored for 1 year	Seeds stored for 2 years
1.	Protein carbonylation	$\begin{gathered} \mathrm{R}=-0.4839 \\ P=0.067599 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.1920 \\ P=0.493014 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.6331 \\ P=0.011295 \end{gathered}$
2.	Electrolyte leakage	$\begin{gathered} \hline \mathrm{R}=-0.2257 \\ P=0.418622 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.2592 \\ P=0.350888 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{R}=0.7096 \\ P=0.00045 \\ \hline \end{gathered}$
3.	C16:0	$\begin{aligned} & \mathrm{R}=-0.1187 \\ & P=0.67351 \end{aligned}$	$\begin{gathered} \mathrm{R}=-0.5308 \\ P=0.041769 \end{gathered}$	$\begin{aligned} & \mathbf{R}=-\mathbf{0 . 8 8 4 1} \\ & P=1.2 \mathrm{E}-05 \end{aligned}$
4.	C18:0	$\begin{gathered} \mathrm{R}=-0.4851 \\ P=0.066822 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.4518 \\ P=0.090902 \end{gathered}$	$\begin{aligned} & \mathbf{R}=\mathbf{0 . 9 9 8 1} \\ & P<0.00001 \\ & \hline \end{aligned}$
5.	C18:1	$\begin{gathered} \hline \mathrm{R}=-0.4133 \\ P=125706 \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{R}=-0.6792 \\ P=005357 \end{array}$	$\begin{aligned} \mathbf{R} & =\mathbf{0 . 9 8 1 5} \\ P & <0.00001 \end{aligned}$
6.	C18:2	$\begin{gathered} \mathrm{R}=-0.3295 \\ P=0.230414 \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.5766 \\ P=0.024444 \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{R}=\mathbf{0 . 9 7 4 6} \\ & P<0.00001 \end{aligned}$
7.	C18:3	$\begin{aligned} & \mathrm{R}=-0.2473 \\ & P=0.37421 \end{aligned}$	$\begin{gathered} \hline \mathrm{R}=-0.4029 \\ P=0.136482 \end{gathered}$	$\begin{gathered} \mathbf{R}=-\mathbf{0 . 9 4 7 1} \\ P<0.00001 \end{gathered}$
8.	PI	$\begin{gathered} \mathrm{R}=0.3031 \\ P=0.272138 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.1986 \\ P=0.477297 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{R}=-\mathbf{0 . 7 5 8 2} \\ P=0.001054 \\ \hline \end{gathered}$
9.	PC	$\begin{gathered} \hline \mathrm{R}=0.5757 \\ P=0.02472 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.3470 \\ P=0.205099 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{R}=-\mathbf{0 . 9 2 8 9} \\ & P<0.00001 \\ & \hline \end{aligned}$
10.	PG	$\begin{gathered} \mathrm{R}=0.4381 \\ P=0.102393 \end{gathered}$	$\begin{aligned} & \mathrm{R}=-0.5982 \\ & P=0.01848 \end{aligned}$	$\begin{aligned} & \hline \mathbf{R}=-\mathbf{0 . 8 6 6 8} \\ & P=2.9 \mathrm{E}-05 \end{aligned}$
11.	PE	$\begin{gathered} \mathrm{R}=0.1068 \\ P=0.704809 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{R}=-0.6045 \\ & P=0.016984 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{R}=-\mathbf{0 . 7 7 4 3} \\ & P=0.000702 \\ & \hline \end{aligned}$
12.	PA	$\begin{gathered} \mathrm{R}=0.0091 \\ P=0.974323 \end{gathered}$	$\begin{aligned} & \mathrm{R}=-0.1134 \\ & P=0.687392 \end{aligned}$	$\begin{aligned} & \mathrm{R}=-0.4390 \\ & P=0.101609 \\ & \hline \end{aligned}$
13.	GSH	$\begin{gathered} \mathrm{R}=-0.1537 \\ P=0.584446 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.2779 \\ P=0.315926 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.6329 \\ P=0.011329 \end{gathered}$
14.	GSSG	$\begin{aligned} & \mathrm{R}=-0.2148 \\ & P=0.442021 \end{aligned}$	$\begin{aligned} & \mathrm{R}=-0.0511 \\ & P=0.85648 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{R}=0.6046 \\ P=0.016961 \\ \hline \end{gathered}$
15.	$\mathbf{E}_{\text {GSSG/2GSH }}$	$\begin{gathered} \mathrm{R}=0.1272 \\ P=0.651451 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{R}=-0.4623 \\ & P=0.082735 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{R}=0.4313 \\ P=0.108458 \\ \hline \end{gathered}$
16.	AsA	$\begin{gathered} \mathrm{R}=0.5988 \\ P=0.018343 \end{gathered}$	$\begin{aligned} & \mathrm{R}=-0.5677 \\ & P=0.027281 \\ & \hline \end{aligned}$	$\begin{aligned} \mathrm{R} & =-0.0850 \\ P & =0.76327 \end{aligned}$
17.	DHA	$\begin{gathered} \mathrm{R}=0.5389 \\ P=0.038486 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.3612 \\ P=0.185918 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=-0.5420 \\ P=0.036878 \end{gathered}$
18.	$\mathbf{E}_{\text {DHA/AsA }}$	$\begin{gathered} \mathrm{R}=0.4430 \\ P=0.098173 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.2353 \\ P=0.398557 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.4208 \\ P=0.118306 \end{gathered}$
19.	GR	$\begin{gathered} \mathrm{R}=0.7163 \\ P=0.002664 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 6 0 6} \\ P=0.000994 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.6398 \\ P=0.010208 \\ \hline \end{gathered}$
20.	APX	$\begin{aligned} & \hline \mathrm{R}=-0.3083 \\ & P=0.263583 \end{aligned}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 5 7 9} \\ P=0.001062 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.6312 \\ P=0.011619 \\ \hline \end{gathered}$
21.	DHAR	$\begin{gathered} \mathrm{R}=0.2861 \\ P=0.301255 \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{R}=\mathbf{0 . 8 7 2 3} \\ & P=2.2 \mathrm{E}-05 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{R}=0.6169 \\ P=0.014297 \\ \hline \end{gathered}$
22.	MDHAR	$\begin{gathered} \mathrm{R}=0.2879 \\ P=0.298089 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}=\mathbf{0 . 7 9 9 1} \\ P=0.000352 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}=0.6207 \\ P=0.013543 \end{gathered}$

