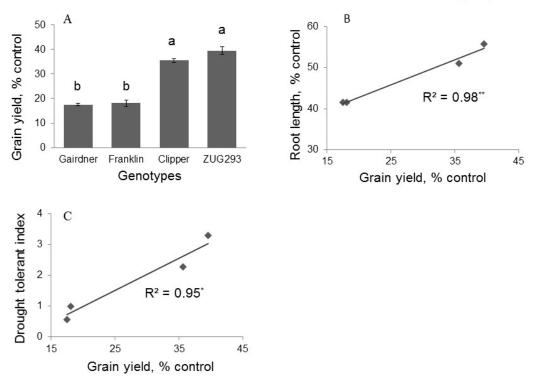
Supplementary Material

Assessing the suitability of various screening methods as a proxy for drought tolerance in barley

Md. Hasanuzzaman^{A,C}, *Lana Shabala*^A, *Tim J. Brodribb*^B, *Meixue Zhou*^A and Sergey Shabala^{A,D}

^ASchool of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.


^BSchool of Biological Science, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia.

^CDepartment of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-

Bangla Nagar, Dhaka-1207, Bangladesh.

^DCorresponding author. Email: sergey.shabala@utas.edu.au

Suppl. Fig. 1

Fig S1. (A) Relative grain yield per plant in drought-affected four barley genotypes (expressed as % of control). (B) Correlation (Pearson's R² value) between grain yield per plant (% of control) and PEG-affected root length (% control). (C) Correlation (Pearson's R² value) between grain yield per plant (% of control) and drought tolerance index estimated by the number of newly grown leaves per plant one week after recovery from drought. Values labelled with different low case letters are significantly different at P < 0.05.