Supplementary Material

Arabidopsis thaliana phytaspase: identification and peculiar properties

Nina V. ChichkovaA, Raisa A. GaliullinaA, Larisa V. MochalovaA, Svetlana V. TrusovaA, Zulfazli M. SobriB,C, Patrick GalloisB and Andrey B. VartapetianA,D

ABelozersky Institute of Physico-Chemical Biology, Moscow State University, 119 991 Moscow, Russian Federation.
BFaculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
CPresent address: Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia.
DCorresponding author. Email: varta@genebee.msu.ru
Fig. S1. The Ser553Ala mutation in At Phyt abolishes the proteolytic activity of the enzyme. Hydrolysis of Ac-YVAD-AFC, Ac-VEPH-AFC, and Suc-AAPF-AFC substrates (20 µM) with equivalent amounts of the wild type At Phyt-GST (WT, black bars), or with the At Phyt (Ser553Ala)-GST mutant (S553A, grey bars) in a pH 6.5 buffer. ΔRFU/h, relative fluorescence units per hour.