Supplementary Material

Modelling seasonal changes in the temperature-dependency of CO₂ photosynthetic responses in two *Vitis vinifera* cultivars

Dennis H. Greer

National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW Australia. Email: dgreer@csu.edu.au

Fig. S1. The relationship between the activation energy for ribulose 1, 5-bisphosphate carboxylation (\(V_{cmax}\)) as a function of the maximum air temperature of the day prior to measurement for the field-grown grapevines cv. Chardonnay and cv. Merlot, as indicated. The fitted line was from a significant \((P = 0.027)\) linear regression and an \(r^2 = 0.45\) across both cultivars.
Fig S2. The relationship between the activation energy for electron transport (J_{max}) as a function of the maximum air temperature of the day prior to measurement for the field-grown grapevines cv. Chardonnay and cv. Merlot, as indicated. The fitted line was from a highly significant ($P = 0.0011$) linear regression and an $r^2 = 0.57$ across both cultivars.