Supplementary Material

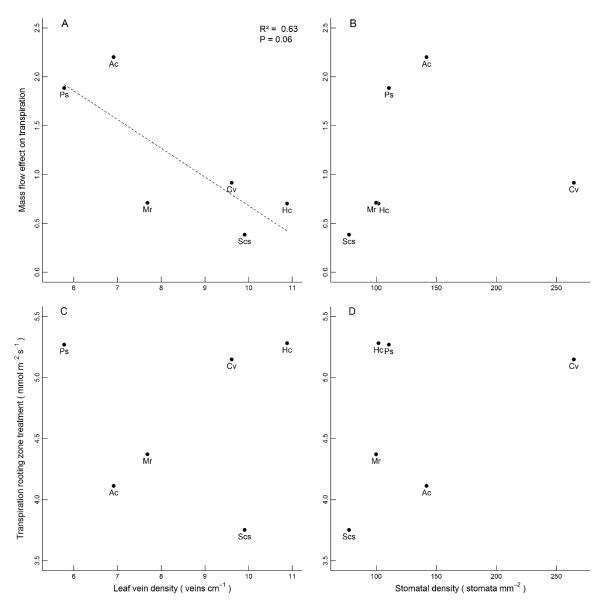
Effects of nutrient supply on carbon and water economies of C4 grasses

Laura Rose^{A,B,F}, Robert Buitenwerf^{B,C}, Michael Cramer^D, Edmund C. February^D and Steven I. Higgins^{B,E}

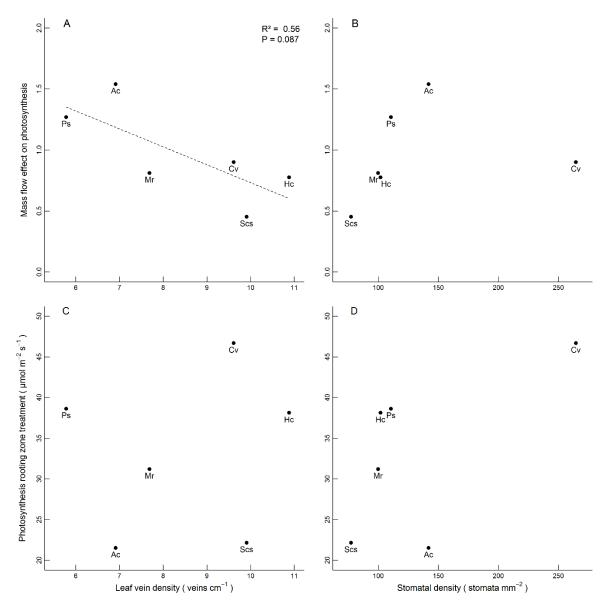
^AUniversity of Freiburg, Faculty of Biology, Geobotany, Schaenzlestr. 1, 79104 Freiburg, Germany.

^BUniversity of Frankfurt, Institute of Physical Geography, Altenhoeferallee 1, 60438 Frankfurt, Germany.

^CAarhus University, Ecoinformatics and Biodiversity, Department of Bioscience, Ny Munkegade 114-116, Aarhus 8000 C, Denmark.


^DDepartment of Biological Sciences, University of Cape Town, Private Bag X2, Rondebosch 7701, South Africa.

^EUniversität Bayreuth, Lehrstuhl für Pflanzenökologie, 95440 Bayreuth, Germany.


Table S1. Specific leaf area, stomatal density, and leaf vein density of six savanna grasses Different letters indicate significant differences between species (Mann-Whitney U test, P < 0.05, Bonferroni corrected, n=8; for M. repens n=5).

	Specific leaf area			Stomatal density			Vein density		
	$(m^2 kg^{-1})$			(number mm ⁻²)			(number mm ⁻¹)		
Species	Mean	± s.e.		Mean	± s.e.		Mean	± s.e.	
A. congesta	23.58	1.53	a	141.8	9.8	b	6.9	0.3	a
C. virgata	39.73	1.34	b	264.4	20.9	a	9.6	0.5	bc
H. contortus	27.8.	3.60	a	101.9	5.2	cd	10.9	0.4	c
M. repens	26.62	1.36	a	99.9	12.1	bcd	7.7	0.5	ab
P. squarrosa	23.97	0.97	a	110.5	3.3	bc	5.8	0.4	a
S. sanguineum	28.63	1.46	a	77.3	3.3	d	9.9	0.4	bc

FCorresponding author. Email: laura.rose@biologie.uni-freiburg.de

Fig. S1. Relationships between the mass flow effect on transpiration and the leaf vein density (A) or the stomatal density (B) and between the transpiration in the rooting zone treatment and the leaf vein density (C) or the stomatal density (D). Effects are calculated from species means as: (spatially separated – no added nutrients) / (rooting zone – no added nutrients). Ac = A. congesta, Cv = C. virgata, Hc = H. contortus, Mr = M. repens, Ps = P. squarrosa, Scs = S. sanguineum.

Fig. S2. Relationships between the mass flow effect on photosynthesis and the leaf vein density (A) or the stomatal density (B) and between the photosynthesis in the rooting zone treatment and the leaf vein density (C) or the stomatal density (D). Effects are calculated from species means as: (spatially separated – no added nutrients) / (rooting zone – no added nutrients). Ac = A. congesta, Cv = C. virgata, Hc = H. contortus, Mr = M. repens, Ps = P. squarrosa, Scs = S. sanguineum.