Supplementary Material

The electrical signal-induced systemic photosynthetic response is accompanied by changes in the photochemical reflectance index in pea

Vladimir Sukhov^{A,B}, *Ekaterina Sukhova*^A, *Ekaterina Gromova*^A, *Lyubov Surova*^A, *Vladimir Nerush*^A and *Vladimir Vodeneev*^A

^ADepartment of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia.

^BCorresponding author. Email: vssuh@mail.ru

Fig. S1. A typical record of electrical signals-induced change in photochemical reflectance index (PRI), which has been registered in the 2^{nd} leaf. R_{531} and R_{570} were calculated as average intensities of reflected light in ranges from (531-N) nm – to (531+N) nm and from (570-N) nm – to (570+N) nm, respectively. **a**, N was 0 nm; **b**, N was 1 nm; **c**, N was 5 nm; **d**, N was 10 nm; **e**, N was 15 nm; **f**, N was 20 nm. The same response has been shown in all panels of the Figure. The electrical signal was induced by heating of the stipule of the first mature leaf (arrow).

Fig. S2. Averaged magnitudes of electrical signals-induced change in photochemical reflectance index (Δ PRI) in the 2nd (**a**) and 4th (**b**) leaves at different calculation of R₅₃₁ and R₅₇₀ (*n*=5). R₅₃₁ and R₅₇₀ were calculated as average values of reflected light in ranges from (531-N) nm – to (531+N) nm and from (570-N) nm – to (570+N) nm, respectively; N was varied between 0 and 20 nm. Δ PRI which was calculated at N=0 was assumed as 100% (dotted line). The electrical signal was induced by heating of the stipule of the first mature leaf.

Fig. S3. Dynamics of electrical signals-induced change in the modified photochemical reflectance index (Δ PRI₅₁₅) and the energy-dependent quenching of fluorescence (Δ NPQ_F) in the 2nd leaf (*n*=7) (a) and a scatter plots between Δ PRI₅₁₅ and Δ NPQ_F (*n*=56) (b). Equation

 $PRI_{515} = \frac{R_{531} - R_{515}}{R_{531} + R_{515}}$ was used. The electrical signal was induced by heating of the stipule of the

Fig. S4. Dynamics of electrical signals-induced change in the modified photochemical reflectance index (Δ PRI₅₅₁) and the energy-dependent quenching of fluorescence (Δ NPQ_F) in the 2nd leaf (*n*=7) (**a**) and a scatter plots between Δ PRI₅₅₁ and Δ NPQ_F (*n*=56) (**b**). Equation

 $PRI = \frac{R_{531} - R_{551}}{R_{531} + R_{551}}$ was used. The electrical signal was induced by heating of the stipule of the

Fig. S5. Dynamics of electrical signals-induced change in the modified photochemical reflectance index (Δ PRI₅₈₆) and the energy-dependent quenching of fluorescence (Δ NPQ_F) in the 2nd leaf (*n*=7) (**a**) and a scatter plots between Δ PRI₅₈₆ and Δ NPQ_F (*n*=56) (**b**). Equation

 $PRI_{586} = \frac{R_{531} - R_{586}}{R_{531} + R_{586}}$ was used. The electrical signal was induced by heating of the stipule of the

Fig. S6. Dynamics of electrical signals-induced change in the modified photochemical reflectance index (Δ PRI₆₆₈) and the energy-dependent quenching of fluorescence (Δ NPQ_F) in the 2nd leaf (*n*=7) (**a**) and a scatter plots between Δ PRI₆₆₈ and Δ NPQ_F (*n*=56) (**b**). Equation $PRI = \frac{R_{531} - R_{668}}{2}$ was used. The electrical signal was induced by heating of the stipule of the

$$R_{531} + R_{668}$$

Fig. S7. Average amplitudes electrical signals-induced changes in PRI and modified photochemical reflectance indices (a) and correlation coefficients between PRI and the energy-

Fig. S8. Electrical signals-induced changes in PRI₆₆₈ in the 2nd and 4th leaves (**a**), average changes (**b**) (*n*=5) and correlation coefficients of Δ PRI₆₆₈ with Δ NPQ (**c**), $\Delta \Phi_{PSI}$ (**d**) and $\Delta \Phi_{PSII}$ (**e**) (*n*=10). Equation $PRI = \frac{R_{531} - R_{668}}{R_{531} + R_{668}}$ was used. The electrical signal was induced by

heating of the stipule of the first mature leaf (arrow).