Supplementary Material

Examining ozone susceptibility in the genus Musa (bananas)

Mst Nahid Farha ${ }^{\mathrm{A}, \mathrm{B},{ }^{*}}$, Jeff Daniells ${ }^{\text {C }}$, Lucas A. Cernusak ${ }^{\text {A }}$, Edita Ritmejeryté ${ }^{\text {, }, \text { Phurpa Wangchuk }}{ }^{\mathrm{D}}$, Stephen Sitch ${ }^{\mathrm{E}}$, Lina M. Mercado ${ }^{\mathrm{E}, \mathrm{F}}$, Felicity Hayes ${ }^{\mathrm{G}}$, Flossie Brown ${ }^{\mathrm{E}}$, and Alexander W. Cheesman ${ }^{\mathrm{A}, \mathrm{E}}$
${ }^{\text {A College of Science \& Engineering and Centre for Tropical Environmental and Sustainability Science, }}$ James Cook University, Cairns, Qld, Australia.
${ }^{B}$ Department of Chemistry, Rajshahi University of Engineering \& Technology, Rajshahi6204, Bangladesh.
${ }^{\text {c }}$ Queensland Department of Agriculture and Fisheries, South Johnstone, QId, Australia.
${ }^{\text {D }}$ Centre for Molecular Therapeutics, Australian Institutefor Tropical Health and Medicine, James Cook University, McGregor Road, Cairns campus, Smithfield, Qld4878, Australia.
${ }^{\text {E F F }}$ aculty of Environment, Science and Economy, University of Exeter, ExeterEX44QE, UK.
FUK Centre for Ecology \& Hydrology, Crowmarsh-GiffordOX108BB, UK.
${ }^{G}$ UK Centre for Ecology \& Hydrology, Environment Centre Wales, Deiniol Road, BangorLL57 2UW, UK.
*Correspondence to: Mst Nahid Farha College of Science \& Engineering and Centre for Tropical Environmental and SustainabilityScience, James Cook University, Cairns, Qld, Australia Email: nahid.farha@my.jcu.edu.au

Table S1: Daytime mean O_{3} concentrations, $\mathrm{AOT}_{40}, \mathrm{POD}_{1}$ and POD_{6} per chamber during the experimental period from 23/10/2020 to 9/2/2021.

Chamber ID	Daytime mean $\mathrm{O}_{3}(\mathrm{ppb})$	AOT_{40} $(\mathrm{ppm}-\mathrm{h})$	POD_{1} $\left(\mathrm{mmol} \mathrm{m}^{-2}\right)$	POD_{6} $\left(\mathrm{mmol} \mathrm{m}^{-2}\right)$
1	14.6 ± 4.5	0.0	4.4	0.0
2	22.6 ± 9.0	0.2	8.1	0.1
3	27.6 ± 13.0	1.7	10.6	0.7
4	28.9 ± 19.6	4.9	11.0	2.1
5	39.0 ± 20.6	8.1	16.1	3.6
6	53.3 ± 22.0	17.6	23.8	8.5
7	65.2 ± 32.0	29.2	29.7	14.2
8	78.7 ± 33.7	42.2	37.0	21.1
9	91.5 ± 39.3	55.0	43.5	27.4

Table S2: Results of a linear regression between biomass (g) of Musa cv. Williams and O_{3} exposure metric calculatedfor each open top chamber at the end of the 109 day experiment.

	AOT $_{40}$							POD_{1}							POD_{6}						
	Intercept			slope			$\frac{\text { Adj-R² }}{} \frac{1.38^{*}}{}$	Intercept			slope			$\frac{\text { Adj-R }^{2}}{0.50^{*}}$	Intercept			slope			$\frac{\mathbf{A d j}-\mathbf{R}^{2}}{0.38^{*}}$
Pseudostem	684	\pm	18.9	-1.79	\pm	0.73		712	\pm	23.3	-2.90	\pm	0.96		682	\pm	18.8	-3.6	\pm	1.5	
\& Corm																					
Leaves	315	\pm	7.8	0.67	\pm	0.30	0.33	308	\pm	11	0.95	\pm	0.46	0.29	315	\pm	7.8	1.3	\pm	0.60	0.33
Suckers	71	\pm		-0.59	\pm	0.15	0.63 **	79	\pm	4.3	-0.94	\pm	0.18	0.77**	70	\pm	4.0	-1.2	\pm	0.31	0.62**

* significant at $\mathrm{P}<0.05$
** significant at $\mathrm{P}<0.01$

