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Abstract. Plants are our major source of renewable biomass. Since cell walls represent some 50% of this biomass,
they are major targets for biotechnology. Major drivers are their potential as a renewable source of energy as transport
fuels (biofuels), functional foods to improve human health and as a source of raw materials to generate building blocks
for industrial processes (biobased industries). To achieve sustainable development, we must optimise plant production
and utilisation and this will require a complete understanding of wall structure and function at the molecular/biochemical
level. This overview summarises the current state of knowledge in relation to the synthesis and assembly of the wall
polysaccharides (i.e. the genes and gene families encoding the polysaccharide synthases and glycosyltransferases (GlyTs)),
the predominant macromolecular components. We also touch on an exciting emerging role of the cell wall–plasma
membrane–cytoskeleton continuum as a signal perception and transduction pathway allowing plant growth regulation in
response to endogenous and exogenous cues.

Additional keywords: cell wall–plasma membrane–cytoskeleton continuum, glycosyltransferase, polysaccharide
structure and biosynthesis, synthase.

Plant cell walls

A distinguishing feature of plant cells is the presence of a
polysaccharide-rich wall. The wall encloses each cell while at
the same time allowing the transfer of solutes and signalling
molecules between cells via specific structures such as
plasmodesmata (symplastic transport), or pores within the gel-
likematrix of thewall itself (apoplasticmovement). Similar to the
skeleton of animals, the plant wall is a key determinant of overall
plant form, growth and development. In contrast to having a
specialised skeletal system as occurs in animals, the shape and
strength of plants rely on the properties of the wall. The wall
also plays a significant role in plant defence and responses to
environmental stresses. Plant walls are important not simply
because they are integral to plant growth and development but
also because they determine the quality of plant-based products.
The texture, nutritional and processing properties of plant-based
foods for humanandanimal consumption is heavily influencedby
the characteristics of the wall. Fibre for textiles, pulp and paper
manufacture, and timber products and increasingly for fuel and
composite manufacture is largely composed of walls, or derived
from them.Due to their relevance to these industries, the chemical
structures of the constituent polymers (polysaccharides, (glyco)
proteins, polyphenolics) and the biochemical processes involved
in the synthesis, maturation and turnover of the wall have been
the subjects of research for many years. This research is now
intensifying with the prospect of using plant ligno-cellulosic
biomass as a viable and sustainable alternative to fossil fuels

in the production of transportation fuels. Advances are likely
to occur through molecular biological and functional genomics
approaches, including public availability of genome sequences
for various species including Arabidopsis, Populus, Vitus
(grapevine), Oryza (rice), Brachypodium and Sorghum,
coupled with extensive, associated genomics resources. To
date, a combination of these and traditional biochemical
technologies has facilitated the identification of genes and
enzymes involved in wall biosynthesis and is likely to
continue to generate progress in the years to come. This
review will cover current work that is being undertaken to
elucidate the genes and gene families encoding polysaccharide
synthases and glycosyltransferases (designated GlyTs) required
for the synthesis of wall polysaccharides. The processes involved
in polysaccharide modification by non-glycosyl constituents
(e.g. methylation, acetylation and phenolic acids) and wall
modification by wall-residing proteins and enzymes, although
immensely important, are outside the scope of this review.
We will also briefly overview an exciting emerging role of the
wall as an external sensor of the environment and the proposed
mechanisms by which the external signals are sensed/perceived
and then transduced across the plasma membrane (PM) to
the cytoskeleton/cytoplasm where signalling pathways are
activated. Many important aspects of wall biology, including
their dynamic re-modelling during growth and development as
well as in response to abiotic and biotic stresses are omitted but
are critical to understanding the roles of walls in these processes.
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We recommend some excellent reviews covering these topics
(Baskin2005;Cosgrove2005;Obroucheva2008;Szymanski and
Cosgrove 2009).

Cell wall structure

Primary plant walls are composed predominantly of a complex
array of polysaccharides (~90%) and some protein (~10%). In
all cell-types, rigid cellulose microfibrils are embedded in a
gel-like matrix of non-cellulosic polysaccharides and pectins.
These polysaccharides are intimately associated with one
another, both non-covalently and covalently, and often with
proteins and lignins. Walls are complex, diverse and dynamic,
changing throughout the processes of cell division, growth and
differentiation. The types of polysaccharides present in the
wall vary depending on the plant species, cell type and
location, developmental stage and history of responses to
biotic and abiotic stresses (Carpita et al. 2001b; Trethewey and
Harris 2002). Growing cells are surrounded by thin (100 nm or
less), highlyhydrated (~60%ofwetweight) primarywalls that are
sufficientlyflexible toyield to thehydrostatic forcesexertedby the
protoplast that drives growth. Primary walls of dicots,
gymnosperms and non-commelinoid monocots (commonly
refered to as Type I walls) consist of a cellulosic network
embedded in a matrix of complex polysaccharides, of which
xyloglucans (XyGs) and pectic polysaccharides are most
abundant (Fig. 1a; Fincher and Stone 1986; Bacic et al. 1988;
Carpita and Gibeaut 1993; McCann and Roberts 1994). Primary
walls of the Poales and related commelinoid monocots
(commonly refered to as Type II walls) are organised in
essentially the same way except that glucuronoarabinoxylans
(GAXs) and (1,3;1,4)-b-D-glucans predominate in the matrix
phase of these species, and levels of pectic polysaccharides
and XyGs are relatively low (Bacic et al. 1988; Carpita and
Gibeaut 1993; McCann and Roberts 1994; Smith and Harris
1999). The concept of Type I/II walls has been extremely
useful to guide wall researchers. However, it is now becoming
somewhat redundant as surveys across the plant kingdom,
particularly driven by the availability of high-throughput
antibody profiling techniques of wall polymers (Moller et al.
2007), suggests a continuum of wall structures rather than clearly
delineated wall types (Harris et al. 1997; Harris 2005).

Cells that have ceased enlarging and are required to withstand
large compressive forces mature by depositing secondary walls
(up to several microns thick) that increase the strength of
the cell and reduce flexibility (Fig. 1b). During secondary wall
development cellulose, and matrix phase polysaccharides with a
lower degree of backbone substitution, such as heteroxylans
and heteromannans, are deposited in a highly ordered pattern.
Togetherwith the deposition of lignin this results in a dehydration
of the wall compartment, which becomes increasingly
hydrophobic in nature. In some cell types, lignin is also
deposited throughout the wall during secondary development.
Hydrophobic lignins overlie and encrust the cellulosemicrofibrils
and matrix phase polysaccharides, and can also be covalently
complexed with wall polysaccharides. To date much effort has
centred on manipulating the composition and levels of lignins.
This work is extensive and important to understanding wall
structure and biosynthesis (Boerjan et al. 2003; Boudet et al.

2003; Vanholme et al. 2008), but lignin biology will not be
addressed here.

The lignin–polysaccharide associations (together with the
dehydration process described above) are factors contributing
to the ‘recalcitrance’ of lignifiedwalls to enzymatic digestion and
must be broken as a preliminary to the enzymatic digestion, or
‘deconstruction’ phase in ‘cellulosic’ bioethanol production and
in ruminant digestion. Themore thoroughly this can be achieved,
the higher the yields of fermentable sugars. Given the surge
in interest in plant biomass for bioethanol production it is
important to recognise that the degree of ‘recalcitrance’ is not
only influenced by the chemistry of the cell walls but also by the
anatomatical structures of the cells and tissues that are the primary
feedstock. Although these factors are only now being considered
for biofuels research, the exhaustive research findings from fibre
digestion and utilisation of forage crops (particularly grasses and
legumes) by ruminant animals provides some useful guidance.
A summary of the chemical composition of the walls of the plant
groups that are the major sources of feedstocks is in Table 1 and
summarised in an excellent review by Harris and Stone (2008).
The extent and type of lignification is a major factor affecting
degradability and, in general, non-lignified walls are easily
degraded whereas lignified walls are much less degradable
(Table 2; Buxton and Redfearn 1997; Wilson and Hatfield
1997). Other physical and chemical structures, such as the
presence of waxes/cuticles and a high proportion of cells with
a high surface area : volume ratio (e.g. thick-walled parenchyma
and sclerenchyma) all contribute to a lower degradability
(Table 2). Plant anatomy at the cellular level also affects
degradability and different cell types and their proportions
influences outcomes (e.g. Chesson 1993; Buxton and Redfearn
1997; Wilson and Hatfield 1997). Pretreatment of feedstocks
that cause either physical disruption of the tissue/cells (e.g. high
pressure/temperature), chemical modification (e.g. alkali causes
both non-covalent (swelling and dissociation of polysaccharide
chains) and covalent (ester saponification) modification) are
essential in mitigating the influence of these anatomical and
chemical characteristics of different feedstocks on enzymic
saccharification.

The basic structures of plantwall polysaccharides are depicted
schematically in Fig. 2. Cellulose microfibrils are composed
of bundles of ~36 linear (1,4)-b-glucan chains (Fig. 2a) held
tightly together by hydrogen bonding (Somerville 2006). The
width, degree of polymerisation and crystallinity of the cellulose
microfibrils are highly variable and depend on the source and
age of the tissue (Bacic et al. 1988). The molecular backbone of
XyGs (Fig. 2b) is similar in structure to cellulose, but the xylosyl
(Xylp) side chains and their extensions prevent hydrogen
bonding along the length of the substituted chain yielding a
more flexible and soluble macromolecule. The side chains of
XyGs are quite diverse and vary in frequency and structure
depending on the tissue and species (Fry et al. 1993; Peña
et al. 2008). The (1,3;1,4)-b-glucans (Fig. 2c) are also similar
in structure to cellulose, except that single (1,3)-b-D-Glcp
residues are located between blocks of multiple (1,4)-b-D-Glcp
residues, introducing ‘kinks’ into the polysaccharide chain.
Adjacent (1,4)-b-D-oligoglucosyl residues (cellodextrin units)
usually consist of cellotriosyl and cellotetraosyl units (~90%
of the molecule) arranged at random with longer cellodextrin
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units (DP 5–20) comprising the remainder of the polysaccharide
(Fincher 2009a).

Heteroxylans (Fig. 2d) are composedof a backboneof (1,4)-b-
linked Xylp of which ~10% are substituted at C(O)3 and C(O)2
with a-L-arabinofuranosyl (Araf) residues, a-D-glucuronic acid
(GlcpA; and 4-O-methyl GlcpA) or a combination of both to
give arabinoxylans (AXs), (methyl)glucuronoxylan (GXs) and
glucuronarabinoxylans (GAXs), respectively. GXs are the most
abundant non-cellulosic polysaccharides in dicot secondary
walls whereas GAXs are minor components of the secondary

walls of soft woods. In comparison, AXs are the predominant
xylans in grass cell walls, with GAXs being less abundant
(York and O’Neill 2008). The backbone Xylp residues can
also be acetylated at the C(O)3 and C(O)2 positions or
sometimes both (York and O’Neill 2008). The Ara sidechains
of the grasswall heteroxylans can be esterifiedwith ferulic and/or
p-coumaric acid, enabling crosslinking between polysaccharide
molecules and between polysaccharides and lignin (Iiyama
et al. 1993). GXs from birch, spruce and Arabidopsis, but not
grasses, have been shown to contain a distinct glycosyl sequence

Middle
lamella

Primary
cell wall

Pectic
polysaccharide

Cellulose

Xyloglucan

     Plasma
membrane

50 nm

Secondary wall
inner layer (S3)

Secondary wall
outer layer (S1)

Intercellular
substance

Secondary wall
middle layer (S2)

Primary wall
layer (P)

(a)

(b)

Fig. 1. Structure and organisation of plant cell walls. (a) Simplified schematic, drawn-to-scale
representation of the spatial arrangement of polymers in a pectin-rich primary cell wall. Reproduced
from McCann and Roberts (1991), with permission. (b) Schematic representation of the cellulose
microfibril orientation in the primary (P) and secondary (S1, S2, S3) wall layers of a xylem fibre cell
or a tracheid. Reproduced from Wardrop and Bland (1959), with permission.
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4)-b-D-Xylp-(1,4)-b-D-Xylp-(1,3)-a-L-Rhap-(1,2)-a-D-GalpA-
(1,4)-D-Xylp at the reducing end (Peña et al. 2007; York and
O’Neill 2008). Heteroxylans comprise approximately one-third
of the biomass of wood and as the current microorganisms
(yeast) are unable to ferment pentoses into alcohol, their

conversion to a fermentable sugar or the discovery of
microorganisms that can efficiently utilise heteroxylans as a
carbon source is now a high priority tomake ligno-cellulosics an
effective and sustainable form of alternate transport fuels
(Somerville 2006).

Table 2. Relative tissue type proportions for cross-sections of warm- and cool-season perennial grasses (modified from Buxton and Redfearn 1997)

SpeciesA Leaf blade tissue cell types Stem tissue cell types
Bundle sheath (wall
moderately thick and
weakly lignified)

Mesophyll (thin
wall, no lignin)

Sclerenchyma (thick,
lignified wall)

Parenchyma (variable
thickness and degree of
lignification depending

on maturity)

Sclerenchyma (thick,
lignified wall)

% cross-sectional area
Warm-season, C4

Bahia grass 11.1 52.4 – – –

Indian grass 17.3–19.7 70.0–71.6 – – –

Switchgrass 28.9 35.7 2.9 65.2 –

Cool-season, C3

Smooth brome grassB 9.6–11.5 60.9–63.5 4.6–4.8 50.9–59.9 20.7–21.6
Kentucky bluegrass 4.1 64.7 6.6 – –

Tall fescue (‘Ky 31’) 5.4 60.6 4.9 – –

AScientific names of grasses in order of listing arePaspalumnotatumFlugge,Sorghastrumnutans (L.)Nash,Panicumvirgatum,Bromus inemis,PoapratensisL.
and Festuca arundinacea.

BRange is based on high and low in vitro dry matter digestibility.

(a)

(b)

(c)

(d )

(e )

(f )

(g )

(h )

Fig. 2. Schematic representation of the polysaccharide structures found in plant cell walls. Cellulose, xyloglucan (XyG) and
(1,3;1,4)-b-glucan have a backbone based on glucose (Glcp), heteroxylan on xylose (Xylp), heteromannan on mannose
(Manp), homogalacturonon (HG) and rhamnogalacturonan II (RG I) on galacturonic acid (GalpA), andRGI on an alternating
disaccharide of GalpA and rhamnose (Rhap).
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The heteromannans (Fig. 2e) consist of the (1,4)-b-
mannopyranosyl (Manp)-containing family of wall
polysaccharides including mannans, galactomannans,
glucomannans and galactoglucomannans. Galactomannans are
polymers consisting of a backbone of (1,4)-b-Manp that can
be substituted at C(O)6 with b-D-Galp. In glucomannans, the
(1,4)-b-Manp backbone is interrupted by (1,4)-b-Glcp residues
at irregular intervals. Glucomannans can be acetylated at C(O)2
or C(O)3 of the Manp residues and also substituted with a-D-
Galp attached through (1,6)-linkages (galactoglucomannan)
(Matheson 1990).

Pectins comprise some of the most complex families
of polysaccharides and include the homogalacturonans (Fig. 2f )
(HG; homopolymers of (1,4)-a-GalpA); xylogalacturonan (XG;
HG substituted at C(O)3with one or two (1,4)-b-D-Xylp residues);
rhamnogalacturonan I (Fig. 2g) (RGI; backbone of [-a-D-GalA-
(1,2)-a-L-Rha-(1–4)-]nwithRha residues substitutedatC(O)2orC
(O)4with linear or branched polymers of (1,4)-b-D-galactan, (1,5)-
a-arabinan, type I arabino-4-galactans, type II (arabino-3,6-
galactans or smaller oligosaccharides containing a-L-Araf,
b-D-Galp, or a-L-Fucp); and rhamnogalacturonan II (Fig. 2h)
(RGII; short HG backbone substituted with complex side chains
containing combinationsofRhap,GalpA,GlcpA,Api,Fucp,Galp,
MeXylp, Kdo, Dha and Ace) (Bacic 2006; Mohnen 2008).
Structural complexity is increased by the addition of acetyl and
methyl groups to GalpA, Fucp, Xylp and Ace residues, which
impact on the physical characteristics and molecular interactions
within the wall and in industrial applications. Chemical evidence
suggests that these pectic polysaccharides are covalently linked to
one another, and to other wall polysaccharides (Mohnen 2008)
although the physical arrangement of these different molecules
within the wall is unknown.

Wall (glyco)proteins,which comprise less than 10%of the dry
weight of the primary wall, are critical to the structural and
functional elements of both the wall and the PM–cytoskeleton
continuum (see below). In addition to serving a structural role,
wall proteins contribute to wall assembly and remodelling during
growth and development, and in stress responses. Such proteins
include enzymes such as hydrolases, proteases, glycosidases,
peroxidases, esterases, as well as expansins, wall-associated
kinases (WAKs), hydroxyproline-rich glycoproteins (HRGPs)
that include extensins, arabinogalactan-proteins (AGPs) and
proline-rich proteins (PRPs) and the glycine-rich proteins
(GRPs). Bioinformatic analysis of genomic sequences has
revealed that most of these wall proteins are encoded by
multigene families. A detailed discussion of the wall proteins
is beyond the scope of this overview and readers are referred to
several recent comprehensive reviews (Rose 2003).

Since the AGPs are implicated in sensing at the cell surface a
brief description of their structure is provided. AGPs are highly
glycosylated proteoglycans, usually containing 1–10% protein
(Johnson et al. 2003).AGPprotein backbones are typically rich in
Hyp/Pro, Ala, Ser and Thr. The Hyp residues are usually
substituted by type II arabino-3,6-galactans (AGs; 5–25 kDa),
although short arabinosides are found (Nothnagel 1997).
Most AGPs are anchored, sometimes transiently, to the plasma
membrane by glycosylphosphatidylinositol (GPI) anchors (Youl
et al. 1998). AGPs are secreted from plant cells in which they are
either anchored to the plasma membrane or are soluble in the

extracellular matrix or cell wall. In Arabidopsis thaliana (L.), at
least 47 genes are predicted to encode AGP protein backbones,
andmost of these are predicted to beGPI anchored (Johnson et al.
2003). These have been divided into several subclasses on the
basis of their biased amino acid composition and their modular
structure, and include13 classicalAGPs, 12AG-peptides (mature
protein backbones of 10–17 amino acids), three basic AGPs that
include a shortLys-rich region and21FLAs (fasciclin-likeAGPs)
that have, in addition to predicted AGP-like glycosylated
regions, putative cell adhesion domains known as fasciclin
domains (Johnson et al. 2003; Schultz et al. 2004). The recent
identification of a salt overly sensitive5 (sos5) mutant with a mis-
sensemutation in the fasciclin domain ofAtFLA4 (Shi et al. 2003)
indicates that these domains are important for FLA function.

Biosynthesis of wall polysaccharides

Polysaccharide synthesis can be broken down into four distinct
stages: (1) production of activated nucleotide-sugar donors,
(2) initiation of polymer synthesis, (3) polymer elongation, and
(4) termination of synthesis (Delmer and Stone 1988). Both the
initiation and termination of synthesis are poorly understood
whereas there has been significant progress on the production
of nucleotide sugar donors and the polymer elongation processes.
The key enzymes in wall biogenesis are the polysaccharide
synthases and glycosyltransferases (GlyTs) that catalyse
formation of the bonds between adjacent monosaccharides
from activated nucleotide-sugar donors and are the focus of this
review. The specificity of these enzymes determines the sequence
of sugar residues within a polysaccharide, and the branching
pattern. Figure 3 shows where different polysaccharides are
synthesised in an idealised plant cell.

The polysaccharides, cellulose and the (1,3)-b-D-glucan
callose, are synthesised by polysaccharide synthases directly at
the PM (Kudlicka and Brown 1997; Delmer 1999). The rosette,
the enzyme complex responsible for cellulose synthesis, has a
diameter of ~25 nm and comprises six identical, spherical
subunits that aggregate together in a hexagonal arrangement,
forming a central pore through which the glucan chains are
extruded (Fig. 3). Rosettes have been visualised in transit from
the Golgi apparatus (GA) to their destination in the PM using
freeze fracture, transmission electron microscopy, and more
recently immunofluorescence techniques (Haigler and Brown
1986; Gardiner et al. 2003; Somerville 2006; Wightman et al.
2009). In contrast, all other non-cellulosic and pectic
polysaccharides are synthesised within the endoplasmic
reticulum (ER) and GA (Fincher and Stone 1981; Gibeaut and
Carpita 1994) using both polysaccharide synthases and GlyTs.
The assembled polysaccharides are then transported to the cell
surface viaGolgi-derived secretoryvesicles and incorporated into
the wall. Recent progress in understanding the assembly of non-
cellulosic polysaccharides suggests that this processmay occur in
both the Golgi compartment and within the apoplast (see below).

Polysaccharide synthases/glycosyltransferases

Sequence similarity, the presence of certain motifs, hydrophobic
cluster analysis (HCA) andcatalytic specificity, havebeenused to
categorise polysaccharide synthases and GlyTs into more than
90 families within the overall ‘glycosyltransferase’ (GT) class of
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carbohydrate modifying enzymes collated in the Carbohydrate
Active enZymes (CAZy) database (Cantarel et al. 2009). Whilst
the humangenome estimated to contain ~200GTgenes (Scheible
and Pauly 2004), in Arabidopsis and rice (Oryza sativa L.),
currently 455 and 565 genes encode CAZy-classified GTs,
respectively (July 22, 2009). The sequences of both species
are grouped into the same 41 families. This large number of
GTs is thought to contribute to the structural and tissue-specific
complexity of plant polysaccharides and glycoconjugates

(Coutinho et al. 2003). The function/s and biochemical
activities of most of the Arabidopsis and other plant GTs have
not yet been characterised.

GTs are broadly divided into two enzyme classes, the type III
polysaccharide synthases and the type II GlyTs. Type III
polysaccharide synthases are integral membrane proteins
with multiple predicted trans-membrane domains (TMDs) that
catalyse the transfer of glycosyl residues from a sugar nucleotide
donor to construct the main polymeric backbone of wall

Fig. 3. Gene families involved in plantwall polysaccharide synthesis. Thisfigure shows an idealised primarywall and the proposed arrangement and location of
some of the major enzymes involved in polysaccharide biosynthesis. Chains of (1,4)-b-glucan (cellulose) are produced by cellulose synthase enzyme complexes
(CSC), or rosettes, at the plasma membrane (PM) that associate with each other to form microfibrils (see Fig. 1a). Members of the CesA family and possibly the
CslC and CslD family are implicated in cellulose synthesis and may form part of the CSC. Callose, a (1,3)-b-glucan, is also synthesised at the PM by a callose-
synthesising (CalS/Gsl) complex. Both these complexes use UDP-Glc on the cytoplasmic side of the PM and extrude their products into the apoplast.
Glycoproteins, such as AGPs, as well as all other non-cellulosic and pectic polysaccharides are synthesised within the Golgi. Csls, GAUT/GATLs and
glycosyltransferases (GlyTs) have all been suggested as being backbone synthases for these polysaccharides. Depending on the location of the catalytic site, the
NDP-sugars are either utilised on the cytoplasmic side of the Golgi membrane (straight arrow) or within the Golgi lumen (curved arrow). The sugar sidechains
found on branched polysaccharides are most likely added by Golgi-localised GlyTs. The completed polysaccharides are transported to the PM in vesicles for
secretion into thewall.Within thewall, furthermodification of the polysaccharides can occur either during or after deposition.Modified fromDoblin et al. (2003),
with permission.
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polysaccharides in a processive manner. These enzymes are
involved in the biosynthesis of homopolysaccharides such as
cellulose, callose, (1,3;1,4)-b-D-glucan and the backbones of
most of the other matrix phase heteropolysaccharides,
including XyGs and heteromannans, but seemingly excluding
the pectins and heteroxylans.

The multigene families of the cellulose synthase (CesA) and
the nine cellulose synthase-like (Csl) groups (CslA-H and J)
(Fig. 4), and the glucan synthase-like (Gsl) genes (Brownfield
et al. 2009) encode members of the type III polysaccharide
synthases. The CesA and the related Csl enzymes are members
of Family GT2 (Table 3) and encode large, integral membrane
proteins, (~500–1200 amino acid residues) that contain between
three to six predicted TMDs towards the COOH terminus and one
to two towards the NH2 terminus. They share a commonD, D, D,
QxxRW motif found in all processive GT2 family members,
including the chitin and hyaluronan synthases, that is believed
to be involved in substrate binding and catalytic activity of the
enzyme (Richmond and Somerville 2000). The Gsl proteins
belonging to Family GT48 (Table 3) are involved in callose
biosynthesis, have 13–19 predicted TMDs andmolecular masses
of greater than 200 kDa, but lack the D, D, D, QxxRW motif
(Brownfield et al. 2009).

The type II class of GlyTs, transfer single glycosyl residues
from the donor to a polysaccharide backbone, although
the recently identified (1,4)-a-D-galacturonosyltransferases
(GAUTs) that participate in HG synthesis and the putative
CAZy GT43 xylan synthases, IRX9 and IRX14, are
exceptions (Table 3). They are anchored to the membrane via
a single TMD that spans the membrane, have a short cytosolic
NH2 terminus, an extended hydrophilic stem region and a
globular catalytic domain towards the COOH terminus of
the protein that resides in the Golgi lumen (Keegstra and
Raikhel 2001). Examples include the a-D-GalTs that
add single a-D-Galp substituents to the (1,4)-b-D-mannan
backbone of galactomannans (Edwards et al. 1999, 2004) and
thea-D-XylTs that add singlea-D-Xylp residues to the (1,4)-b-D-
glucan backbone of XyGs (Faik et al. 2002; Cavalier and
Keegstra 2006; Cavalier et al. 2008).

Recent developments in understanding wall biosynthesis

Increasingly, genetic manipulation and conventional breeding
techniques are being applied in attempts to modify the quality
and quantity of individual cell wall components for broader
commercial applications. The best candidates for this
manipulation are the genes, enzymes and biochemical pathways
involved in wall polysaccharide biosynthesis. It has been
estimated that well over 2000 different gene products are
involved in making and maintaining the wall (Carpita et al.
2001a). Until recently, little was known about the polysaccharide
synthases and GlyTs involved in wall biosynthesis, mostly due
to the difficulty in obtaining active enzymes, particularly the
polysaccharide synthases, by traditional biochemical methods.
There has now been significant progress in describing some of the
genes that are involved in the biosynthesis of cellulose and matrix
phase polysaccharides and these genes, and the evidence for their
functionality, are summarised in Table 3 and discussed below.
A cautionary note, however, is that plants demonstrate incredible
plasticity and hence disruption of genes in one pathway results in

pleiotrophic effects making interpretation of some gene disruption
experiments difficult.

Cellulose

Before 1996, attempts to isolate and purify the cellulose synthase
enzyme complex (CSC) were largely unsuccessful as the activity
of the enzyme is rapidly lost with cell rupture and detergent
solubilisation and the predominant product synthesised
from UDP-Glc is callose; this considerably hampered progress
towards identifying the catalytic protein(s). A highly significant
breakthrough occurred through the use of a bioinformatic
approach when Delmer and colleagues made a cDNA library
of cotton fibre transcripts at a time of maximal cellulose synthesis
and randomly sequenced a small subset of the resulting clones
(Pear et al. 1996).Twogenes, later renamedGhCesA1 and2,were
identified that shared low but significant sequence similarity
with the catalytic subunits of the bacterial cellulose synthases.
Unequivocal proof of their involvement in cellulose synthesis
came with the identification and characterisation of cellulose-
deficient Arabidopsis mutants, most notably the root swelling
(rsw) (Baskin et al. 1992; Arioli et al. 1998) and irregular xylem
(irx) (Turner and Somerville 1997; Taylor et al. 1999) mutants,
with lesions in CesA genes (Desprez et al. 2007).

It is nowclear that there aremultipleCesAgenes in the genome
of each plant species and that there is functional specialisation
(and in some cases partial redundancy) between isoforms.Mutant
analyses in Arabidopsis (but since verified in other species)
have shown that a functional CSC has at least three different,
non-redundant CesA proteins: CesAs 1, 3 and 6 or 6-like (CesAs
2, 5 and 9 are partially redundant to 6) and CesAs 4, 7 and 8 are
required for primary and secondary wall cellulose synthesis,
respectively (Taylor et al. 1999, 2000, 2003; Gardiner et al.
2003; Desprez et al. 2007; Persson et al. 2007b). The exact
biochemical activity of each CesA isoform, although speculated
upon (Read and Bacic 2002), has not yet been shown
experimentally apart from one instance in which yeast-
expressed GhCesA1 was able to convert sitosterol-b-glucoside
to sitosterol cellodextrins, thus confirming their ability to
synthesise (1,4)-b-glucan linkages (Peng et al. 2002). The
CesA isoforms interact directly and when all three are
present, they form higher order oligomeric structures involving
homodimers (Kurek et al. 2002; Gardiner et al. 2003; Atanassov
et al. 2009). Through the use of taggedCesAproteins, it may now
be possible to purify CSCs from detergent-soluble extracts
and establish whether any other proteins are permanent
components of the complex. CSCs are also being isolated
in lipid rafts with a view to identifying their components
and understanding their functions of the complex partners
(V. Bulone, pers. comm.). While the in vitro cellulose
synthase assay conditions have been significantly improved
(Lai-Kee-Him et al. 2002; Pelosi et al. 2003; Colombani et al.
2004), synthesis rates are still quite low compared with those
observed in vivo (~10%) and assay conditions need to be
empirically defined and optimised for each plant system.

Several studies have implicated other proteins in the
CSC. These include the membrane-bound KORRIGAN-type
cellulases, as well as KOBITO (KOB/ELD1/ABI8), a protein
of unknown function, the glycosylphosphatidyl inositol (GPI)-

364 Functional Plant Biology M. S. Doblin et al.



anchored protein COBRA and the chitinase-like CTL1/POM1/
ELP1/HOT2 (Robert et al. 2004; Somerville 2006), and enzymes
involved in N-linked glycan maturation, for example knopf, and
rsw3, glycosidase I and II mutants, respectively. It is not always
clear how or why these mutations impact on cellulose assembly.

More recently, correlation analyses of microarray data have been
used to search for other genes that may be involved in cellulose
synthesis, regulation and/or deposition (Brown et al. 2005;
Persson et al. 2005). Associations between the CSCs and the
cytoskeleton are also critical to the orientation of wall cellulose

Fig. 4. Phylogenetic tree of the proteins encodedby the cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families in higher plants.Of the nineCsl
families, theCslFandCslHgenes are foundonly in cereals (Poaceae),while theCslBandCslG families appear to be foundonly in eudicots (Hazen et al.2002).The
CslJ group is found in certain cereals, including barley, wheat, sorghum, and maize, but not in rice or Brachypodium. Reproduced from Fincher (2009b), with
permission.
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and are further discussed in the cell wall–PM–cytoskeleton
continuum section.

The cellulose synthase-like D (CslD) family has also been
linkedwith cellulose biosynthesis, although the evidence for their
involvement is currently inconclusive. The CslD genes are the
most similar in sequence to the CesAs in the regions surrounding
the D, D, D, QxxRWmotif and the cysteine-rich domain near the
NH2 terminus shown tobe important forCesA isoform interaction
(Kurek et al. 2002; Atanassov et al. 2009). In Arabidopsis,
Nicotiana spp. and rice, CslD expression is associated with
tip-growing cells (root hairs, pollen tubes, xylem fibres) and in
moss, protonema cells (Doblin et al. 2001; Favery et al. 2001;
Wang et al. 2001; Becker et al. 2003; Honys and Twell 2003;
Bernal et al. 2007, 2008; Kim et al. 2007; Roberts and Bushoven
2007), providing correlative evidence for this proposal. CslD
proteins have been located in the ER (Favery et al. 2001; Bernal
et al. 2007), GA (Dunkley et al. 2006; Bernal et al. 2008;
Zeng and Keegstra 2008) and PM (Natera et al. 2008), making
deductions of function from these data impossible. Analysis of
mutants has not allowed the function of CslDs to be elucidated
unambiguously, although it has confirmed that these genes play
an important role in tip-growing cells. Apart from the proposed
function in cellulose microfibril synthesis, the CslDs have also
been suggested to be involved in both the synthesis of non-
crystalline cellulose (Manfield et al. 2004) and, surprisingly, in
xylan synthesis (Bernal et al. 2007). Clearly, additional avenues
to link the CslDs to a function need to be explored to clarify the
exact role of this gene family.

In a recent study of the CslC gene family in barley
(Hordeum vulgare L.), indirect evidence that also included
immunocytochemical location (PM) was provided that is
consistent with some family members (HvCslC2) being
involved in the synthesis of cellulose (Dwivany et al. 2009).
Unlike HvCslC3 and HvCslC1, the expression profiles of
HvCslC2 and HvCslC4 were not found to be highly correlated
with those of putativeXylTs orXET/XTHs, enzymes involved in
XyG assembly or re-modelling, suggesting that these genes are
not involved in XyG synthesis (Dwivany et al. 2009) (see ‘XyG’
section). Corroborative evidence of these divergent functions is
that the HvCslC2 sequence has a PM location and, is in a clade
separate to AtCslC4 (Dwivany et al. 2009), the CslC protein with
(1,4)-b-glucanactivity and aGolgi location (Cocuron et al. 2007).
From a biochemical perspective, the proposed functional
diversification within the CslC family is far from implausible
as XyG backbone synthases and cellulose synthases both make a
(1,4)-b-glucan chain.

Heteromannan

Two different types of enzymes involved in the biosynthesis
of mannan polysaccharides have been identified to date: a (1,4)-
b-(gluco)mannan synthase (GlcManS) that polymerises the
polysaccharide backbone, and a (1,6)-a-galactomannan
galactosyltransferase (GMGT) that adds Gal residues to the
backbone. The fenugreek (Trigonella foenum-graecum L.)
seed endosperm GMGT is one of only three type II GTs that
have been biochemically purified (Edwards et al. 1999) enabling
the gene (TfGalT) to be cloned from NH2 terminal peptide
sequence (Table 3). TfGalT is a member of Family GT34
containing both galactomannan (1,6)-a-GalTs and XyG (1,6)-

a-XylTs. Bioinformatic analyses have shown that Arabidopsis
may contain two putative galactomannan (1,6)-a-GalTs (Faik
et al. 2002) and at least one in barley (Doblin et al. 2009).
However, these genes and their encoded enzymes have not yet
been functionally characterised, either in vitro or in vivo.

The first gene isolated that encoded a mannan synthase was
CtManS, a CslA from guar (Cyamopsis tetragonoloba (L.))
endosperm (Dhugga et al. 2004). Several other CslA genes
have since been tested for mannan (and other) synthase
activities. In Drosophila Schneider 2 (S2) cells, recombinant
AtCslA9, the Arabidopsis CslA with highest sequence similarity
to the guar enzyme, and AtCslA2 both displayed ManS and
glucomannan synthase (GlcManS) activities in vitro when
assayed with GDP-Man, or both GDP-Man and GDP-Glc,
respectively (Liepman et al. 2005). These observations
indicate that multiple members of the Arabidopsis CslA gene
family encode b-(gluco)mannan synthases and that a singleCslA
gene is capable of all three ManS, GlcS, and GlcManS activities
(Liepman et al. 2005). Heterologous expression of CslA family
members from diverse plant species has yielded proteins with
ManS and/or GlcManS activity, at least in vitro (Suzuki et al.
2006; Liepman et al. 2007). As yet, none of the rice, maize and
barley CslA genes in the cereal-specific clade of the CslA family
have been shown experimentally to encode ManS (van Erp and
Walton 2009).

Xyloglucan (XyG)

Genes encoding the (1,4)-b-glucan synthases involved in
synthesising the XyG backbone as well as the (1,6)-a-Xylp-,
(1,2)-b-Galp- and (1,2)-a-Fucp transferases that participate in
XyG sidechain addition have been identified. These enzymes
have been classified into GT families 2, 34, 47 and 37,
respectively (Table 3). There are multiple members within
each family with only some biochemically characterised with
respect to substrate specificity (Fig. 5).

The GT Family 2 gene AtCslC4 is proposed to encode a
XyG glucan backbone synthase. (Cocuron et al. 2007) used
transcription profiling of developing nasturtium (Tropaeolum
majus (L.)) seeds in which XyG is the primary seed storage
polysaccharide to identify TmCslC, a gene with highest sequence
similarity to Arabidopsis AtCslC4. When either TmCslC or
AtCslC4 was expressed in Pichia cells, short chains of (1,4)-b-
glucan accumulated and, upon co-expression of AtCslC4 with
AtXXT1 (a XylT), a longer (1,4)-b-glucan was synthesised
(Cocuron et al. 2007). Strong correlative evidence of AtXXT1
involvement in XyG biosynthesis, as well as the fact that
AtCSCL4 and AtXXT1 are coordinately expressed and co-
locate to the GA (Dunkley et al. 2006; Cocuron et al. 2007;
Zabotina et al. 2008), provide support that both AtCslC4 (and
TmCslC) are involved in XyG backbone synthesis and appear to
interact either directly or indirectly with their respective XylTs.
Whether all members of the CslC clade in dicots/gymnosperms
participate inXyGsynthesis needs tobe confirmed, particularly in
light of the recent study byDwivany et al. (2009) proposing a role
for HvCslC2 in cellulose synthesis (see ‘Cellulose’ section).

The addition of the side chain residues (monosaccharides and
oligosaccharides) to the (1,4)-b-D-glucan backbone to form XyG
by the GlyTs (XylTs/GalTs/FucTs) has been intensively studied
using a combination of heterologous expression of the proteins
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and biochemical characterisation of their substrate specificity
together with mutant analysis. A detailed description is beyond
the scope of this review but the salient features and relevant
references are summarised in Table 3 and Fig. 5. These elegant
studies demonstrate the exquisite substrate specificity of GTs as
well as their plasticity under abnormal conditions and reinforce
the need to perform biochemical studies on each of the members
of multigene families.

(1,3;1,4)-b-D-glucan

Like the cellulose synthases, attempts to isolate the components
of the (1,3;1,4)-b-D-glucan synthase by biochemical means
have been ineffective. More recently, a comparative genomics
approach has, however, been successfully applied to uncover
putative polysaccharide synthase genes. The identification of
a quantitative trait locus contributing to (1,3;1,4)-b-D-glucan
content in ungerminated barley grain (Han et al. 1995)
allowed the syntenic region in the rice genome to be located,
leading to the discovery of a cluster of six rice OsCslF genes
(Burton et al. 2006). Given the earlierfinding that theCslF family
is one of three cereal-specific Csl families (the others are the
CslHs and CslJs; Hazen et al. 2002; Fincher 2009b) and the fact
that (1,3;1,4)-b-D-glucan is a polysaccharide unique to the
walls of cereals, the CslF genes became prime candidates for
encoding (1,3;1,4)-b-D-glucan synthases (Burton et al. 2006).
This possibility was tested by ‘gain-of-function’ experiments
in transgenic Arabidopsis plants, a species that contains
no (1,3;1,4)-b-D-glucan in its walls nor has any CslF genes.
Heterologous expression of rice OsCslF2, 4 or 9 in

Arabidopsis resulted in the appearance of immunologically
detectable levels of (1,3;1,4)-b-D-glucan in leaf epidermal
walls, and therefore the CslF family probably encodes
(1,3;1,4)-b-D-glucan synthases (Burton et al. 2006). This
conclusion is consistent with the temporal and spatial
expression patterns of the seven CslF genes in barley (Burton
et al. 2008).

Similar experiments in which barley CslH1 was expressed
in transgenic Arabidopsis plants and the plants analysed
immuncytochemically and biochemically to confirm
polysaccharide structures have shown that the CslH proteins
are also capable of generating (1,3;1,4)-b-D-glucan in leaf
walls (Doblin et al. 2009), suggesting that there are two types
of (1,3;1,4)-b-D-glucan synthases in cereals. The transcript level
of the single barleyCslH gene is very low and is restricted to cells
that have either mature primary walls (e.g. starchy endosperm)
or secondary wall thickenings (e.g. leaf interfascicular
sclerenchymal fibre and xylem cells) and hence, it has been
suggested that its main role is in (1,3;1,4)-b-D-glucan synthesis
during secondarywall synthesis (Doblin et al. 2009).That twoCsl
families appear to be involved in (1,3;1,4)-b-D-glucan synthesis is
curious. Why have two similar protein families, not just one,
evolved to provide a (1,3;1,4)-b-D-glucan synthesis function
within the restricted Poalean plant lineage? The answer may
lie in the different functional roles of (1,3;1,4)-b-D-glucan in
primary v. secondary walls, as amobilisable, storage or structural
polysaccharide, respectively (Burton and Fincher 2009). This
hypothesis and others remain to be tested.

The CslF and CslH gain-of-function experiments in
Arabidopsis suggest that both genes encode synthases with the
same biochemical activity and produce a type of (1,3;1,4)-b-D-
glucan that is similar to barley (Doblin et al. 2009). Whilst
the simplest explanation is that both CslF and CslH proteins
synthesise both the (1,3)-b- and (1,4)-b-linkages, the cumulative
evidence is most consistent with the interpretation that both types
ofCsl protein produce only the (1,4)-b-linkage. First, all otherCsl
proteins characterised to date make only (1,4)-b-linkages (see
previous sections). Second, the levels of (1,3;1,4)-b-D-glucan
deposited in Arabidopsis leaf walls were very low (<0.02%w/w)
in comparison to barley (0.4% w/w). The restricted pattern
of deposition in only certain leaf cell walls despite transgene
expression being driven by the constitutive CaMV35S promoter
implies that additional protein/s (or other factors) are likely to be
involved in (1,3;1,4)-b-D-glucan synthesis (Burton et al. 2006;
Doblin et al. 2009). A second GlyT to make the (1,3)-b-linkage
would explain some of the idiosyncrasies of (1,3;1,4)-b-D-glucan
structure such as the random arrangement of the cellotriosyl and
cellotetraosyl units within (1,3;1,4)-b-D-glucan chains (Staudte
et al. 1983) and the observation that in cells actively making
(1,3;1,4)-b-D-glucan, this polysaccharide, unlike AX and
heteromannans, is never observed by immunoEM within the
GA (Wilson et al. 2006), the proposed location of (1,3;1,4)-b-
D-glucan synthesis (Henry et al. 1983;Gibeaut andCarpita 1993).
Given the Golgi location of the HvCslH1 protein, a novel
mechanism has been proposed for (1,3;1,4)-b-D-glucan
assembly in which cellodextrins are synthesised by CslF or
CslH proteins in the Golgi and joined together by (1,3)-b-
linkages by another GlcT at the PM (Burton and Fincher 2009;
Doblin et al. 2009; Fincher 2009a, 2009b). The Gsl proteins, the
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Fig. 5. The polysaccharide synthases and GlyTs involved in xyloglucan
biosynthesis in Arabidopsis. XyG structures are typically described using
a single letter nomenclature to represent the substitution pattern of each
backbone Glcp residue (Fry et al. 1993). The letters G and X denote an
unbranched Glcp residue and the a-D-Xylp-(1,6)-b-D-Glcp motif,
respectively. In Arabidopsis, the Xylp residues may be substituted with a
b-D-Galp (L sidechain) and the Gal residue of sidechain L is often substituted
at O-2 with an a-L-Fucp residue to form the F sidechain (Peña et al. 2007). In
XyG extracted from wild-type Col-0 leaves, XXXG (45%) is the major
oligosaccharide detected after digestion with a Trichoderma viride endo-b-
D-glucanase that specifically cleaves the XyG backbone at the unsubstituted
Glc residues. Other digestion products include XXFG (24%), XLFG (16%),
XXLG (8%), XLXG (3%) and XLLG (4%) (Madson et al. 2003). The genes
(enzymes in parentheses) known to be involved in the assembly of the XyG
backbone and side chains are indicated in italics, those surmised to be
involved are underlined.
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XyGendotransglycosylases (XETs) or another as yet unidentified
GlcTmight be able to catalyse such a reaction (Doblin et al. 2009;
Fincher 2009b). Co-expression analyses have begun to be used to
identify other genes that might be involved in the (1,3;1,4)-b-D-
glucan synthesis and assembly process (Schreiber et al. 2008;
Burton and Fincher 2009). The next step will be to test the
function of these candidate genes through various means,
including heterologous expression in combination with the
CslF and/or H proteins.

Pectin

Homogalacturonan (HG)

Based on structure, a total of ~67 GlyTs, methyltransferases
and acetyltransferases are predicted to be required for pectin
synthesis (Ridley et al. 2001). Assays for some of these activities
have been described (Ridley et al. 2001; Mohnen 2008) but to
date, there is conclusive experimental evidence supporting a role
in pectin biosynthesis for only a few genes (Scheller et al. 2007;
Mohnen 2008). Only one pectin biosynthetic enzyme has been
biochemically isolated. The type II HG (1,4)-a-GalpAT, termed
GAUT1, has been partially purified from solubilised membrane
extracts of Arabidopsis suspension-cultured cells (Sterling et al.
2006). GAUT1 antibodies immuno-adsorbed HG (1,4)-a-
GalpAT activity from these preparations and when expressed
inmammalianHEK293 cells, GAUT1 transfersGalA fromUDP-
a-D-GalpA onto the non-reducing end of HG polysaccharide and
oligosaccharide acceptors with a preference for DP > 9 (Sterling
et al. 2006).GAUT1was one of two genes, togetherwithGAUT7,
identified by peptide sequencing of the partially purified HG
(1,4)-a-GalpAT. Both genes belong to a family of 25 genes in
Arabidopsis that consist of 15GAUT and 10GAUT1-like (GATL)
genes clustered in CAZy Family GT8 (Lao et al. 2003; Sterling
et al. 2006). To date, mutants in three GAUT1-related family
geneshavebeen studiedand theobservedphenotypes suggest that
the encoded proteins, in addition to GAUT1, are involved in the
synthesis of wall polysaccharides and may have GalAT activity.
TheArabidopsisQUASIMODO1 (QUA1), IRX8 and PARVUS/
GLZ1 proteins are encoded by theGAUT8,GAUT12 andGATL1
genes, respectively. Interestingly, the mutant phenotypes of all
three genes include effects on both HG and xylan content and/or
synthase activity, thus preventing their definitive functional
identification (Shao et al. 2004; Orfila et al. 2005; Brown
et al. 2007; Lee et al. 2007b; Peña et al. 2007; Persson et al.
2007a). While pectins and heteroxylans are generally thought of
as separate polymers, structural analyses have suggested that they
may be covalently linked (Nakamura et al. 2002). Hence, it has
been proposed that a lack of an enzymatic activitymay affect both
polymers through the absence of a specific linkage (Persson et al.
2007a; Mohnen 2008). Other explanations that have been
proposed to account for the dual polysaccharide effects in the
mutants are that HG and xylan synthesis are associated through
either a common biosynthetic complex/es or regulatory
mechanism, altered polysaccharide deposition or impaired
scaffolding between the xylan polymer and specific pectic
polymers in the secondary wall (Persson et al. 2007a; Mohnen
2008).

A XylT that adds Xylp residues onto the HGA backbone has
recently been identified by mutant analysis of the Arabidopsis

CAZyGT47members (Jensen et al. 2008). In the xgd1–1mutant,
less terminal Xylp residues were found in the pectic fraction
compared with wild type, indicating a reduction in xylose-
substituted HG (XGA). Transformation of the xgd1–1 mutant
with the wild-type gene complemented the XGA-deficient
phenotype and when XGD1 was transiently expressed via
Agrobacterium in leaves of Nicotiana benthamiana (Domin.),
the protein catalysed the transfer of Xylp from UDP- Xylp onto
oligogalacturonides and endogenous acceptors (Jensen et al.
2008). The reaction products were hydrolysable with an XGA-
specific hydrolase, confirming that XGD1 is a XGA
XylT. Additional biochemical analysis of the XGD1 protein is,
however, necessary to determine the exact linkage formed by the
enzyme (Jensen et al. 2008).

Rhamnogalacturonan I (RG I)

The ARAD1 protein, also a CAZy Family GT47 member
(Fig. 6), appears to be involved in the biosynthesis of arabinan
side-chains of RG I.Walls of ARAD1mutants contain significant
decreases in leaf and stem Ara (75% and 46%, respectively, of
wild-type levels) (Harholt et al. 2006). Immunohistochemical and
linkage analysis indicated a specific decrease in the level but not
structure of arabinan side chains of RGI with no change in other
pectic domains or wall glycoproteins, indicating that it is likely
that the decreased arabinan content is a direct result of the
mutation. Transformation of mutant plants with ARAD1 driven
by the 35S promoter led to full restoration of the Ara-deficient
phenotype, suggesting that ARAD1 is an arabinan (1,5)-a-
arabinosyltransferase. A demonstration of this activity by the
ARAD1 protein is required as proof of its function, however.

Rhamnogalacturonan (RG II)

Two homologous plant-specific Arabidopsis genes, RGXT1
and RGXT2, encode novel type II, Golgi-localised XylTs and are
likely to participate in the formation of the A chain in RG II
(Egelund et al. 2006). These sequences, originally identified in a
bioinformatic search aimed at discovering unclassified cell wall
GlyTs, seeded the newCAZyGT family 77, ofwhich there are 18
and 15members inArabidopsis and rice, respectively. Truncated,
soluble forms of the corresponding proteins expressed in insect
cells displayed XylT activity, transferring D-Xyl from UDP-a-D-
Xyl to L-Fuc in a (1,3)-a-linkage, demonstrating the proteins to be
(1,3)-a-D-XylTs. As this particular linkage is only known to exist
in RG II, it was surmised that RGXT1 and RGXT2 transfer Xylp
to the Fucp residue in side chain A of RG II (Egelund et al. 2006).
In phylogenetic analyses, two other sequences form a cluster with
RGXT1 and 2, sharing 68–75% identity with these proteins,
hence, they too may be Fuc-specific XylTs. However, the
function of the remaining Arabidopsis sequences cannot be
inferred with any accuracy as they only share low (<19%)
identity with the RGXTs.

Another gene that most likely participates in the synthesis of
RG II is GUT1 from Nicotiana plumbaginifolia (Viv.), yet
another member of CAZy Family GT47 (Fig. 6). A T-DNA
insertion mutant of NpGUT1, nolac-H18 (non-organogenic
callus with loosely attached cells), has only 14% GlcpA
content of normal callus cell walls (Iwai et al. 2002). The
presence of undetectable levels of GlcpA and a 50% decrease

370 Functional Plant Biology M. S. Doblin et al.



in Gal in RG II isolated from the mutant together with an ~82%
reduction in RG II dimer formation in vitro suggest that the
NpGUT1 protein is an RG II (1,4)-b-GlcAT that transfers GlcpA
onto the L-Fucp in RG-II side chain A (Iwai et al. 2002), the same
Fuc acceptor substrate for RGXT1 and 2. This proposed function
forNpGUT1 has not yet been substantiated by an in vitro enzyme
assay. This is particularly important in this case, as the two
Arabidopsis proteins with highest sequence similarity to
NpGUT1, IRX10 and IRX-LIKE with 86% and 92% amino
acid identity, respectively, have recently been implicated in
xylan chain elongation (Brown et al. 2009; Wu et al. 2009). If
the biochemical activities corroborate these conclusions, then a
close sequence comparison of these proteins may yield
information regarding what sequence motifs direct donor and/
or acceptor specificity and potentially the control of single v.
multiple sugar additions.

Heteroxylan

GX biosynthesis is likely to involve multiple GTs responsible
for the formation of the backbone, the reducing-end sequence
(see ‘Cell wall structure’ section), at least for dicots and
gymnosperms, as well as enzymes that add side chains and
modify them. No single gene has been unambiguously

described as encoding a xylan synthase, although there is
mounting evidence implicating several GlyTs in having such a
function, as well as others that appear to be involved in the
synthesis of the reducing-end primer sequence. To date in
Arabidopsis, four genes (IRX9 and IRX14, IRX10 and IRX10-
like) and three genes (IRX7/FRA8, IRX8/GAUT12, PARVUS/
GLZ1/GATL1) have been hypothesised to be involved in xylan
backbone synthesis and synthesis of the reducing-end sequence,
respectively (Table 3).

The IRX and PARVUS genes and their homologues in poplar
and rice were all initially identified by correlative expression
analyses using EST ormicroarray data aimed at identifying genes
that function in secondary wall polysaccharide synthesis,
including xylan (Aspeborg et al. 2005; Brown et al. 2005;
Persson et al. 2005; Geisler-Lee et al. 2006; Mitchell et al.
2007). Biochemical analysis of the corresponding mutants has
shown that all have a secondary wall phenotype and exhibit a
deficiency in xylan, with two classes of enzymes involved in
xylan biosynthesis being identified. NMR andMALDI–TOFMS
analysis of xylan extracted from irx7/fra8, irx8 and parvus has
shown an absence of the reducing-end oligosaccharide sequence,
yet xylan synthase activity in thesemutants is similar towild-type
(Brown et al. 2007; Lee et al. 2007a, 2007b; Peña et al. 2007).
This suggests an important role for the reducing-end sequence in

Fig. 6. Phylogenetic tree of the Arabidopsis CAZy GT47 family. An unrooted distance phylogenetic tree generated from
a CLUSTALW alignment of the amino acid sequences in the putative conserved catalytic domain pfam03016 of the 39
ArabidopsisGT47proteins.TheArabidopsisGlyTsare tentativelydivided into fourmajorgroupsA–D,andgroupAis further
separated into four subgroups I–IV. Tobacco NpGUT1 (group AI) is included in the tree to show its relationship to the
Arabidopsis orthologues. Reprinted from Trends in Plant Science, Vol 8, R Zhong and Z-H Ye, Unraveling the functions of
glycosyltransferase family 47 in plants, 565–568, 2003, with permission from Elsevier.
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xylan biosynthesis, andhas led to the prediction that IRX7/FRA8,
IRX8 and PARVUS catalyse the linkages found within this
reducing-end oligosaccharide (Brown et al. 2007; Lee et al.
2007b; Peña et al. 2007). In contrast, the reducing-end
sequence is present in irx9, irx14 and the irx10 irx10-like
double mutant (a mild or no phenotype is observed in the
single mutants, respectively, suggesting considerable
functional redundancy between these genes) but xylan
synthase activity (measured by the ability to transfer [14C]Xyl
from UDP-[14C]Xyl onto (1,4)-b-xylooligosaccharides) is
greatly reduced (Brown et al. 2007; Lee et al. 2007b; Peña
et al. 2007). A decreased xylan chain length has also been
observed in irx9 (Peña et al. 2007) and the irx10 irx10-like
double mutant (Brown et al. 2009). These data imply that
IRX9, IRX14, IRX10 and IRX10-LIKE are required for xylan
chain elongation.

IRX9 and IRX14 belong to CAZy Family GT43 and IRX10
and IRX10-LIKE are yet further members of GT47 (Fig. 6). The
findings that expression of IRX10 and to a lesser extent IRX10-
LIKE is predominantly in cells undergoing secondary wall
thickening, that there is no loss of cell adhesion and the
majority of RG II is dimerised in the irx10 irx10-like double
mutant and there appears to be no difference comparedwithwild-
type in either the A or B sidechain of RG II argues against these
genes having a function similar to NpGUT1 (Brown et al. 2009;
Wu et al. 2009). However, the recent complementation of the
irx10 irx10-likemutant with a chimeric IRX10-NpGUT1 protein
inwhich theNH2-terminal 71 amino acids of IRX10were fused to
theNH2-terminus ofNpGUT1 (Wu et al. 2009) calls into question
the presumed role of NpGUT1 in RG II biosynthesis.
Further work is required to resolve this discrepancy. Whether
the individual IRX9/14/10/10-LIKE proteins have the same
mechanism of action and whether they are associated in a
biosynthetic complex in a similar way to the CesA proteins is
unclear (Peña et al. 2007; Brown et al. 2009). IRX7/FRA8 is also
member of the GT47 family (Fig. 6); hence has been proposed to
catalyse either the formation of one of severalb-linkages ofXylp,
for example, Xylp to Rha using UDP-a-Xylp, or the addition of
a-linked Rhap to GalpA using UDP-b-Rhap (Peña et al. 2007).

Since IRX8 and PARVUS are both members of the GAUT1-
related family they have both been hypothesised to catalyse the
addition of the a-D-GalA residue to the O-4 of the reducing
Xyl residue of the reducing end oligosaccharide, possibly acting
redundantly (Peña et al. 2007). However, YFP-tagged PARVUS
protein is found to predominantly localise to the ER (Lee et al.
2007b), a subcellular location distinct from FRA8, IRX8 and
IRX9, which have been shown to be Golgi-located (Zhong et al.
2005; Peña et al. 2007). This difference is consistent with trans-
membrane predictions indicating that whereas IRX7/FRA8,
IRX8 and IRX9 are type II membrane proteins, PARVUS
contains a hydrophobic signal peptide sequence but no trans-
membrane helices (Lee et al. 2007b). The ER localisation of
PARVUS suggests that it catalyses an earlier step that is different
from IRX8 in GX biosynthesis (Lee et al. 2007b). It has been
hypothesised that the reducing-end sequence might function
as either a primer or as a chain terminator for GX biosynthesis
(Peña et al. 2007; York and O’Neill 2008). The finding that
PARVUS is located in the ER and is required for the synthesis of
the oligosaccharide sequence at the reducing end of GX favours

the reducing end sequence having a primer function (Lee et al.
2007b).

Despite the plausible roles for IRX7/8/9/10/10-LIKE/14 and
PARVUS in GAX biosynthesis, experimental proof of their
precise enzymatic function is lacking. Attempts to demonstrate
the function(s) of FRA8 and IRX9 by heterologous expression in
Pichia cells have been unsuccessful as no activity was detected
(Zhong et al. 2005; Peña et al. 2007). Hence, further work is
required to demonstrate their biochemical activity.

Nucleotide sugar interconversion

Apart from cellulose and callose, the synthesis of the non-
cellulosic polysaccharides and pectins occurs within the Golgi
apparatus. The active site of the participating polysaccharide
synthases (Golgi lumen or cytosol) and GlyTs (Golgi lumen
only)may face either the cytosol or theGolgi lumendependingon
their membrane topology (Doblin et al. 2003). In the latter case,
the enzymes are separated from their substrates and cofactors in
the cytosol and hence their availability to the synthesismachinery
relies on transporters resident in Golgi cisternal membranes as
well as the appropriate nucleotide sugar interconversion enzymes
(NSIEs). Substantial progress has been made in identifying and
characterising the genes and enzymes utilised in this process.
These advancements have recently been reviewed (Seifert 2004;
Reiter 2008; Reyes and Orellana 2008) and will not be discussed
in detail here. Analyses of various mutants with defects in NSIEs
have confirmed the essential role for these proteins in wall
biosynthesis. It has been hypothesised that transcriptional and
post-translational control of NSIEs regulates wall biosynthesis in
response to developmental, metabolic and other environmental
stimuli (Seifert 2004). Apart from characterising additional
NSIEs and transporters, future work will focus upon
elucidating the role of NSIEs in regulating wall synthesis,
addressing issues such as feedback inhibition and redox
sensing, the significance of differing kinetic properties and
subcellular location between isoforms and their ability to form
multimeric complexes (Seifert 2004; Reiter 2008). Another area
of research will be to further understand the role of NSIEs in
growth, development and defence responses. Mutants of
Arabidopsis UXE1/MUR4/HSR8, for example, have reduced
L-Ara levels due to impaired enzymatic function but also
display altered sugar response phenotypes affecting cell
division and expansion (Burget and Reiter 1999; Burget et al.
2003; Li et al. 2007). Such studies will aid in determining the
signallingmechanisms linkingwall changes to cellular responses
(see the wall–PM–cytoskeleton continuum section below).

The cell wall–plasma membrane–cytoskeleton continuum

The cell wall–PM-cytoskeleton continuum is vital for the
perception of signals from the external environment and for
coordinated cell growth and expansion during plant
development. To date, several (glyco)proteins that have been
implicated in regulating/sensing the external environment of
the cell (Humphrey et al. 2007). These include the AGPs (Du
et al. 1996; Nothnagel 1997; Schultz et al. 1998; Majewska-
Sawka and Nothnagel 2000; Seifert and Roberts 2007), cellulose
synthases (Somerville 2006; Hématy et al. 2007; Hématy and
Höfte 2008) andmore recently PM receptor kinases including the
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WAKs (Kohorn 2000; Riese et al. 2003), the Ser/Thr CrRLK1L
(Catharanthus roseus receptor-like-kinase-1-like) subfamily
(Hématy et al. 2007) and a clade of the leucine-rich repeat
(LRR) RLK family (Xu et al. 2008). These are summarised
schematically in Fig. 7 and briefly discussed below.

AGPs are situated at the PM wall interface and have long
been thought to play a central role as a mediator of these
processes. Mounting evidence indicates that AGPs have a
specific function during root formation, the promotion of
somatic embryogenesis, pollen tube guidance, alternation
between sporophytic and gametophytic transitions in the ovules,
resistance to root-dependent transformation by Agrobacterium,
hormone signalling and xylem differentiation/vascular function
in Zinnia and Arabidopsis (Seifert and Roberts 2007). Physical

connections between the wall and the PMwere originally inferred
from microscopic observations of the presence of AGPs as a
fuzzy ‘glycocalyx’ occupying the PM-wall interface (Roberts
1990) and then as discrete connections (Hechtian strands),
particularly in plasmolysed cells upon salt stress (Carpita and
Gibeaut 1993; Gens et al. 2000; Lamport et al. 2006; Pickard
2008). Since AGPs were know to be highly water soluble
protoeglycans it was unclear how they might fulfill this role.
The discovery that most AGPs have a GPI membrane anchor
provided the evidence for their mechanism of association with
thePM(Youletal.1998;OxleyandBacic1999).SinceGPIanchors
do not traverse the entire PM, GPI anchored proteins have been
implicated in mediating cell–cell interactions in mammalian
systems by interacting with other proteins (Du et al. 1996; Plun-

(a) (b) (c)

Fig. 7. A schematic representation of the relationship between polysaccharide synthases, PM-bound proteins and RLKs within the cell wall-PM-cytoskeleton
continuum. (a) Impairment of cellulose synthesis, for example, via genetic mutation of CesA6 (Hématy et al. 2007), causes an inhibition of cell elongation.
THESEUS1, a PM-bound RLK, is activated in this inhibition response and potentially transduces the signal into the cytoplasm, eventually leading to
transcriptional changes within the nucleus. Microarray analysis has revealed several genes differentially regulated by THE1 (Hématy et al. 2007). Among the
genes that are positively regulated are two putative transcription factors AP2-EREBP B4 andWRKY45, genes encoding proteins involved in protection against
reactive oxygen species (ROS), pathogendefenceproteins andcellwall-related proteins suchas expansin (AtEXPA1) andglycine-richproteinsGRP3andGRP3S
that have been shown to interact withWAK1 (Park et al. 2001). Hence, THE1 andWAK signalling pathways (C) are connected through these GRPs. Amolecule
that links theCSC (or otherwall protein/s) to the cytoskeleton to control cellulosemicrofibril orientation has not yet been identified (yellowcircle). (b) LRR-RLKs
FEI1 and 2 also regulate cell expansion but act in a separate pathway from CesA6 or COBRA, with the GPI-anchored SOS5/FLA4 AGP potentially acting as a
ligand for the FEIs (Xu et al. 2008). AGPs are thought to play a role in allowing cell elongation to occur andmaintaining cell wall integrity (Humphrey et al. 2007;
Seifert and Roberts 2007). Interaction of SOS5/FLA4 with the cytoskeleton has been proposed to be mediated by either a direct interaction with transmembrane
protein(s) (e.g.WAKs,CesAs,RLKs, etc.) or an indirect interaction involving lipid rafts (Sardar et al. 2006) (yellowoval). (c) PM-localisedWAKshave also been
implicated in cell expansion (Lally et al. 2001;Wagner andKohorn 2001). The signal/s that induceWAKshave not yet been identified, nor their cellular response.
WAKs may sense wall expansion by their attachment to pectin and signal via influencing the activity of vacuolar invertase, thus controlling turgor during cell
expansion (Kohorn et al. 2006). There is some evidence to suggest AtGRP3 could be a ligand for the WAK1 receptor (Park et al. 2001). There may also be an
association betweenAGPs andWAKs, based on the co-localisation ofAGP-epitopes andWAK1 in immunofluoresence studies (Gens et al. 2000). Signal inputs,
arrows pointing towards the nucleus; signal outputs, arrows pointing towards wall.
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Favreau et al. 2001; Johnson et al. 2003).A sub-class ofAGPs, the
fasciclin-like AGPs (FLAs) are likely candidates as they have,
in addition to predicted AGP-like glycosylated regions in their
protein backbones, putative cell adhesion domains known as
fasciclin domains (Johnson et al. 2003; Schultz et al. 2004). In
other eukaryotes (Elkins et al. 1990; Kawamoto et al. 1998) and
Volvox (Huber and Sumper 1994), fasciclin domain-containing
proteins are involved in cell adhesion. Interestingly, SOS5/FLA4,
a GPI-anchored fasciclin-typeAGP, has been proposed as a ligand
of the LRR-RLK familymembers FEI1 and FEI2 (Xu et al. 2008).
fei1 fei2 double mutants have defects in cell expansion primarily
in roots, are cellulose-deficient and hypersensitive to isoxaben
in the presence of sucrose or salt (Xu et al. 2008). Genetic
analyses indicate that FEI1 and FEI2 act within the same
pathway as SOS5/FLA4 but in a pathway independent of
COBRA or PROCUSTE1/CESA6 to regulate wall expansion
(Fig. 7). Classical AGPs that are GPI-anchored have been
implicated in controlling cell shape via a connection, as yet
undefined, with the cytoskeleton, due to their involvement in
orienting cortical microtubules and influencing F-actin
organisation (Andème-Onzighi et al. 2002; Sardar et al. 2006).

Wall associated kinases (WAKs) are a family of
transmembrane proteins that, unlike AGPs, possess the
necessary structure to provide a physical link between the wall
and the PM and to be directly involved in subcellular signalling
(Kohorn 2000;Riese et al. 2003;Humphrey et al. 2007). They are
transmembrane proteins that have a conserved cytoplasmic Ser/
Thr protein kinase domain as well as an extracellular wall domain
that differs between family members (Fig. 7). An Arabidopsis
GRP,AtGRP-3 is predicted to be awall protein that interacts with
WAKs, specifically binding to WAK1 both in vitro and in vivo
(Park et al. 2001). BothAtGRP-3 andWAKs have conservedCys
residues, and it is possible these are responsible for the interaction
between AtGRP-3, WAK1 and other proteins (Park et al. 2001).
WAKs are also bound to thewall in part by a covalent association
with pectin (Anderson et al. 2001). The ability of WAKs to bind
both GRPs and pectins in their phosphorylated form is proposed
to relate to their role in regulating cell expansion (Fig. 7).

The CrRLK1L family includes THESEUS1 (THE1), which
appears to be involved in sensing the integrity of the wall through
theperturbationof theCSC(Hématyetal.2007;HématyandHöfte
2008), FERONIA (FER) required for growth cessation of
compatible pollen tubes (Escobar-Restrepo et al. 2007) and
AmRLK involved in the control of the polar conical outgrowth
ofepidermalcells inAntirrhiniumpetals(HématyandHöfte2008).
The potential mechanism/s bywhich these novel Ser/Thr receptor
kinasesareinvolvedingrowthregulationwasrecentlysummarised
byHématy andHöfte (2008) andwill not be discussed further here
as no ligands for these receptors are yet identified.

Evidence accumulated over many decades, including the
observations of co-alignment of cortical microtubules and
cellulose microfibrils and a loss of directed cell expansion
and CSC mobility upon microtubule disruption (Gardiner et al.
2003; Somerville et al. 2004; Paredez et al. 2006; DeBolt et al.
2007; Paredez et al. 2008) confirm a link between the cortical
cytoskeleton and the wall through the cellulose synthase rosette
complexes in the PM and the central role this plays in cell growth
and expansion. The link between the cytoskeleton and cellulose
synthesis is further demonstrated by the fact that CesA mutants

have disrupted cytoskeletal organisation and cytoskeletonmutants
having disrupted cellulose deposition (Burk and Ye 2002; Chu
et al. 2007; Paredez et al. 2008). However, this relationship is not
completelymutually dependent. For example, cellulosemicrofibril
deposition is normal in roots of the temperature-sensitive
microtubule organisation1 (mor1–1) mutant that causes cortical
microtubule disassembly (Sugimoto et al. 2003;Wasteneys 2004),
supporting thenotion that cellulosemicrofibrils can self-align in the
absenceofnormalmicrotubuleorganisation.Byanalogy, it is likely
that another polysaccharide synthasealso locatedat thePM,callose
synthase,couldhaveasimilar roleasitassemblescalloseinasimilar
directed manner and is rapidly activated upon physical or biotic
stresses although a link between the cytoskeleton and the synthase
complex is yet to be demonstrated.

Future directions

The focus of this review has been on plant wall biosynthesis and,
in particular, the synthesis of wall polysaccharides as well as
the emerging realisation of the importance of the apoplast, plasma
membrane, cytoskeleton in sensing/perceiving the external
environment leading to cytoplasmic signalling cascades that
regulate plant growth processes. Polysaccharide synthesis and
wall assembly occurs through a complex and intricate series of
steps that often begin in an intracellular compartment and end in
thewall itself, after the polysaccharides have been deposited. The
great structural diversity of wall polysaccharides is due to the
large number of possible constituent sugars and non-sugar
components, the variety of ways these can be linked together,
and the many ways in which linear polymers can be branched or
modified. Regulation of these steps is central to cell development,
because the polysaccharide composition of the wall changes
during cell division, elongation and differentiation. At a larger
scale, for the plant to assemble its mature organs and tissues in an
orderly manner, the stages of wall synthesis in the range of
different cell types must be integrated through time and space
and must also respond to internal and external developmental
cues; how this coordinate regulation of wall synthesis is achieved
is unknown and remains a major future research question in plant
biology.

The wall is now recognised to be a metabolically active
‘organelle’ that also plays a critical role in sensing and
responding to external signals during growth and development
as well as in response to abiotic/biotic stresses. Identifying the
(glyco)proteins located at the PM involved in the interaction
between the wall, PM and cytoskeleton and understanding their
mechanism(s) of signal transductionwill be important in devising
strategies to optimise growth for plant production.

In the post-genomic era, the greatest challenge is to
demonstrate the enzymatic activity/specificity of each GT gene
product implicated in wall biosynthesis. GT mutants have
proven useful in some instances, providing a phenotype from
which a function could be deduced, however, in many cases, an
association with a specific biochemical activity has not been
forthcoming. This means that additional approaches and tools –
bioinformatic, biochemical, genetic, molecular biological,
proteomic and others – need to be used in future studies to
gather evidence of function. One approach is heterologous
expression of GTs within organisms that provide a ‘null’
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background and where a robust enzyme assay and unequivocal
product characterisation can be provided. In other cases, the
road to determining a definitive activity for a GT will be more
difficult. The use (and availability) of appropriate acceptors
and donors in biochemical reactions to test enzymatic activity
will be vital in these instances. Importantly, care must be taken in
the extrapolation of data obtained from ‘proof-of-function’
experiments to other GT family members, and in assuming
that an enzymatic activity shown in vitro is the same as its
function in vivo; for example, the complexity of the GlyTs in
CAZyFamilyGT47 described above. Continued perseverance of
elucidating the suite of genes and enzymes that participate in wall
polysaccharide and (glyco)protein biosynthesis is critical, given
the rich rewards in terms of the benefits to human society in using
plant products for food, fibre, feed and fuel.
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