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Abstract. Plants typically have photosynthetically competent green shoots. To complement resources derived from the
atmospheric environment, plants also acquire essential elements from soil. Inorganic ions and molecules are generally
considered to be the sources of soil-derived nutrients, and plants tested in this respect can growwith only inorganic nutrients
and so can live as autotrophs. However, mycorrhizal symbionts are known to access nutrients from organic matter.
Furthermore, specialist lineages of terrestrial photosynthetically competent plants are mixotrophic, including species that
obtain organic nutrition from animal prey (carnivores), fungal partners (mycoheterotrophs) or plant hosts (hemi-parasites).
Althoughmixotrophy is deemed the exception in terrestrial plants, it is a commonmode of nutrition in aquatic algae. There is
mounting evidence that non-specialist plants acquire organic compounds as sources of nutrients, taking up andmetabolising
a range of organic monomers, oligomers, polymers and even microbes as sources of nitrogen and phosphorus. Plasma-
membrane located transporter proteins facilitate the uptake of low-molecular mass organic compounds, endo- and
phagocytosis may enable the acquisition of larger compounds, although this has not been confirmed. Identifying the
mechanisms involved in the acquisition of organic nutrients will provide understanding of the ecological significance of
mixotrophy. Here, we discuss mixotrophy in the context of nitrogen and phosphorus nutrition drawing parallels between
algae and plants.
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Introduction

Terrestrial primary production and the resulting vast phytomass
is fuelled by the photosynthetic power of the plant shoot,
complemented by the root’s acquisition of water and nutrients
fromsoil.Althoughmost terrestrial organisms livepredominantly
either above- or belowground, plants, with the notable exception
of epiphytes, span both. Green plants are considered autotrophs
that are capable of converting inorganic material into organic
matter using the electromagnetic energy of light. The atmosphere
provides the substrates for photosynthesis, whereas all other
essential elements are predominantly derived from soil
(Marschner 1995). A plant is truly autotrophic when its roots
acquire only inorganic nutrients, including nitrate, ammonium,
base cations, ortho- and polyphosphates and sulfate. Autotrophy
has been shown in hydroponic experiments on the essentiality of
particular elements in which plants complete their life cycle in
the absence of exogenous organic compounds (Arnon and Stout
1939; Marschner 1995; Epstein and Bloom 2005). However,
roots in soil are exposed to numerous organic compounds, and
much of the soil’s nitrogen (N) and phosphorus (P) is organic.

Soil N occurs predominantly as amino acid-based molecules
(Schulten and Schnitzer 1997), organic P, for example, as
phytate and nucleotides, and organic sulfur as a variety of
organosulfur compounds (Dyer and Wrenshall 1941; Schulte
and Kelling 1999). In addition, soils contain a large range of
carbon compounds such as organic acids and sugars, including
those released by roots, and there are bidirectional fluxes
(soil–roots) of organic matter (Jones et al. 2009).

There is broad agreement that plants acquire N and P in
inorganic form. Inorganic N is relatively mobile in soil, although
orthophosphate has significant restrictions on its mobility, but
has greater mobility than phytate or polyphosphate. The
acquisition of inorganic ions and molecules by roots involves
plasma membrane located transporters that catalyse selective
uptake, and accumulation, of inorganic N and P. It is generally
assumed that plants are net exporters of organic compounds
into soil and importers of inorganic ions and molecules, but
recently the role of organic compounds as plant nutrients is
being re-evaluated (reviewed by Paungfoo-Lonhienne et al.
2012).
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It therefore seems timely to explore mixotrophy – the
combined nutritional modes of autotrophy and heterotrophy –

in ecological andmechanistic contexts.We focus here onN and P
because they occur as organic and inorganic compounds in soils,
and their supply is a major determinant of plant growth in natural
ecosystems and bioproduction systems (reviewed by Lambers
et al. 2008; Peltzer et al. 2010;Ma et al. 2012).We briefly outline
nutrient acquisition strategies to highlight root specialisations,
and discuss mixotrophy in algae and in plants. The last section
discusses how larger organic molecules may enter roots, and the
function of organic compounds as signalling molecules that
increase root branching and the presence of root tips and
associated root hair zones.

Overview of nutrient acquisition strategies

Root specialisations: mycorrhizal fungi, N2 fixing
procaryotes and cluster roots

The four main specialisations for nutrient acquisition are root
exudates and their extreme occurrence in the functioning of
cluster roots, and symbioses with mycorrhizal fungi and N2

fixing bacteria (Fig. 1). Although exudates universally
contribute to root function, their amount and composition
varies among species and growth situations, the other
specialisations are species specific. The mycorrhizal symbioses
are most common and formed by most of plant species with a
range of fungal partners, different extent of mycorrhizal
colonisation, and varying benefits derived from the symbiosis.
The dependence of plants on mycorrhizal fungi for accessing
nutrients fromorganicmatter and soilminerals iswell established
(Smith and Read 2008). Mycorrhizas are not the focus here,

although we discuss mycoheterotrophy in the context of green
orchids.

An estimated 10% of plant taxa have N2 fixing symbioses
(Franche et al. 2009), providing an alternative N source to soil
N at the cost of photosynthates required to operate N2 fixation
by the bacterial symbionts and, especially, the production and
maintenance of the specialised structures (nodules, rhizothamnia
and coralloid toots) housing the symbiont. Far fewer plant
species have N2 fixing symbioses than mycorrhizas, although
most ecosystems contain N2 fixing plants. N2 fixing symbioses
are beyond the scope of this review (see Sprent 2001).

Several thousand plant species do not form mycorrhizal
symbioses, including all species of the Proteaceae, many
sedges, and species in several other plant families (Tester et al.
1987; Lambers et al. 2008), including the model plant
Arabidopsis thaliana and other Brassicaceae. However, the
recently discovered symbiotic associations with endophytic
dark septate fungi are quite common (Caldwell et al. 2000),
and occur in Arabidopsis thaliana (Mandyam et al. 2013).
Most Proteaceae, many sedges, some N2 fixing species
(perhaps most actinorhizal species and some legumes) and
other species produce cluster roots in response to low nutrient
availability. Cluster roots are considered particularly
beneficial in P-depauperate soils (reviewed by Dinkelaker
et al. 1995; Neumann and Martinoia 2002; Lambers et al.
2006). Cluster roots impact a small volume of soil by exuding
protons, organic acids, secondary compounds and enzymes
(Dinkelaker et al. 1995; Shane and Lambers 2005; Paungfoo-
Lonhienne et al. 2009), and, less well characterised, through
interaction with microbes (Marschner et al. 2002; Weisskopf
et al. 2011).

PLANT ADAPTATIONS FOR NUTRIENT CAPTURE

Cluster rootsRoot exudates

Mycorrhizae
Biological nitrogen
fixation

Fig. 1. Overview of plant strategies for nutrient acquisition. Four acknowledged strategies are (i) root exudates, (ii) mycorrhizal
associations, (iii) N2 fixing symbioses in leguminous and actinorhizal species, (iv) cluster roots.
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Ecosystems have been classified along a gradient of ‘organic-
to-inorganic nutrients dominated’, with the former requiring
greater specialisation by the plant to access nutrients than the
latter. In slow-mineralisation organic-nutrient rich ecosystems,
such as heathlands and boreal forests, specialised ecto- and
ericoid mycorrhizal fungi depolymerise organic matter via
extracellular enzymes, and supply nutrients to plants (Read
and Perez-Moreno 2003; Lambers et al. 2008). In rapid-
mineralisation ecosystems such as grasslands, plants are have
mostly arbuscular mycorrhizas and are thought to acquire
inorganic nutrients that are derived from breakdown of organic
matter by soil microbes (Read and Perez-Moreno 2003).

In light of all root specialisations, it remains uncertain
what proportion of N and P is acquired by roots as inorganic
or organic compounds. The difficulties associated with studying
rhizosphere processes, including chemical characterisation of
nutrients and quantification of their fluxes, have limited
progress in understanding the importance of organic N and P
for plant nutrition. However, roots take up a variety of organic
compounds (Näsholm et al. 2009; Paungfoo-Lonhienne et al.
2012). An important consideration for the discussion on
mixotrophy is that irrespective of root specialisation, a
significant proportion of the root surface is free of fungi or
other microbes (Bais et al. 2006).

Root exudates

Root exudates affect the availability of nutrients directly or
indirectly (reviewed by Walker et al. 2003; Bais et al. 2006;
Jones et al. 2009). Exudates are complex chemical mixtures of
low and high molecular weight compounds, including organic
acids, phytosiderophores (only in the Poaceae), sugars, vitamins,
amino acids, purines, nucleosides, inorganic ions, dissolved
gases, high molecular weight carbohydrates (mucilage),
enzymes and root border cells (reviewed by Dakora and
Phillips 2002). Exudates are communication agents and
facilitate nutrient acquisition through various mechanisms (see
reviews byWalker et al. 2003; Bais et al. 2006). Themechanisms
that plants use to interpret the chemical signals in the rhizosphere
that originate fromsoil organisms andother plants, remain largely
unknown (Bais et al. 2006). This has relevance to mixotrophy,
and is discussed below.

Root-derived enzymes released into the apoplast and
rhizosphere may contribute to mixotrophy if they generate
organic compounds that are subsequently acquired by roots.
Root exoenzymes have been studied for their role in catalysing
the breakdown of large organic molecules as well as other
functions. High-molecular mass inorganic compounds (e.g.
poly-phosphates) and organic compounds (e.g. protein,
phytate, DNA) can be degraded by root-derived phosphatases,
proteases, phytases and DNAses (reviewed by Paungfoo-
Lonhienne et al. 2012). Phosphatases are exuded, for example,
from cluster roots of Proteaceae and Fabaceae (Dinkelaker
et al. 1995; Yamamura et al. 2002; Wasaki et al. 2003). In
legumes, root phosphatase activity is higher than in other forbs
regardless of the presence of nodules (Venterink 2011), and soil
associated with N2 fixing plants has higher extracellular
phosphatase activity than soil without N2 fixers (Houlton et al.
2008). Root-derived proteases have been described in Hakea

(Proteaceae), carnivorous plants, Arabidopsis and other species
including crops (Adlassnig et al. 2012). Proteases are present in
the root apoplast (Tornero et al. 1996; Hamilton et al. 2003), and
the presence of protein degradation products in the apoplast of
inner root cortex suggests that proteases are active in the apoplast
and at the root surface (Paungfoo-Lonhienne et al. 2008).

From an evolutionary viewpoint, the release of enzymes into
the rhizosphere is advantageous only if the nutrient gain
outweighs the nutrient loss in the exudates, or alternatively, if
breakdown products have important signalling roles (Paungfoo-
Lonhienne et al. 2008). The presence of enzymes in the apoplast
may catalyse the degradation of larger molecules that enter roots
via transpiration-driven movement of the soil solution and
diffusion, but this is not well characterised. Overall, there has
been comparatively little research on root exoenzymes for plant
nutrition, as it was generally assumed that microbes drive the
breakdown of soil organic compounds. The rhizosphere was
treated as a ‘black box’ and researchers were satisfied to
consider microbial activity in general terms (Silberbush 2013).
Recent advances in molecular methods characterising microbial
communities in soil, rhizosphere and roots promise to advance
knowledge of rhizosphere dynamics (Bulgarelli et al. 2012;
Lundberg et al. 2012).

The positive relationship between the release of enzymes
and access to organic nutrients that has been observed in
plants tested in controlled conditions has not always been
confirmed in soil. For example, wheat genotypes with greater
exudation of phosphatase acquired more P from organic P when
grown axenically, but not when grown in soil (George et al.
2008). Similarly, transgenically-enhanced root exudation of
phytase improved plant growth with phytate in controlled
conditions, but to a lesser extent in soil (reviewed by
Richardson et al. 2009). Root-derived exoenzymes may have
numerous roles, although how much they contribute to the
breakdown of organic compounds in the apoplast relative to
the rhizosphere, and subsequent uptake of the resulting
compounds, is unknown.

Mixotrophy in phytoplankton, other aquatic organisms
and terrestrial plants

Mixotrophy, as phagomixotrophy, is a common and
biogeochemically important strategy in eukaryotic
phytoplankton and a range of planktonic and benthic protists
and metazoans which have acquired photosynthesis by
endosymbiosis of cyanobacterial or microalgal cells or through
kleptoplasty (Raven 1997; Stoecker 1998; Raven et al. 2009;
Esteban et al. 2010; Hartmann et al. 2012; Flynn et al. 2013). In
most planktonic habitats the strategy predicted to maximise the
abundance of mixotrophs is a predominantly photosynthetic
mode of energy gain in combination with consuming bacteria
and other microbes which increases acquisition of essential
elements (Crane and Grover 2010), thereby outcompeting
planktonic phototrophs and phagotrophs (Tittel et al. 2003;
Hartmann et al. 2012).

Is mixotrophy an ancestral state in algae? Endocytosis, itself
a synapomorphy of eukaryotes, was how all extant algae and
hence embryophytic (‘higher’ plants), regardless of whether or
not they exhibit mixotrophy, obtained their plastids by primary,
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secondary or tertiary endosymbiosis followed by genetic
integration (Raven 1997; Raven et al. 2009). It is likely that
phagomixotrophy was retained in some clades after the genetic
integration of plastids (Raven et al. 2009). Phagotrophy also
underlies kleptoplasty, where plastids from an algal food item are
retained in a functional form in an otherwise heterotrophic cell
(Raven et al. 2009; Flynn et al. 2013). Such kleptoplastids are
capable of long-term functionality if the nucleus from the plastid
source is retaining a functional state with the plastids which
occurs in the ciliate Myrionecta rubra (Johnson et al. 2007).
However, in some cases, plastid longevity occurs without
retention of food alga nuclei or prior horizontal gene transfer
from the algal nucleus to the grazer nucleus (Wagele et al. 2011;
Pillet and Pawlowski 2013).

In addition to phagomixotrophy, most algae are also capable
of osmomixotrophy, i.e. uptake of individual soluble organic
molecules by transporters in the plasmalemma (Raven et al. 2009;
Flynn et al. 2013) and perhaps, of soluble macromolecules by
fluid-phase endocyotosis, so-called pinocytosis. The significance
of osmomixotrophy in phytoplankton under natural conditions is
unclear; it is possible that the net flux of low molecular mass
organic solutes is outwards under many conditions (see Flynn
et al. 2013). Osmomixotrophy also occurs in photosynthetic
bacteria such as cyanobacteria, as well as in proteobacterial
anoxygenic photosynthetic bacteria. Particularly widespread in
the surface ocean are anoxygenic aerobic photosynthetic
proteobacteria, and the otherwise heterotrophic proteobacteria
with proteorhodopsin (Zubkov 2009; Raven and Donnelly
2013). Here the photochemical reactions do not power
autotrophic CO2 assimilation, but spare the use of respiratory
processes in energising solute transport and ADP
phosphorylation, and so may legitimately be considered
mixotrophs since the cells use two sources of energy, i.e.
electromagnetic radiation and dissolved organic compounds
(Zubkov 2009; Raven and Donnelly 2013).

Osmomixotrophy as a source of organic carbon permitting
growth (in the dark) or increasing growth (in the light) is not
universal in autotrophs. Obligate photoautotrophy, i.e. the
inability to grow other than with light as the energy source and
inorganic nutrients supplying essential elements, has been
reported for several algae (including cyanobacteria) (Raven
2012). As with algae that cannot be grown in laboratory
culture under any conditions so far used, so with obligate
photoautotrophic algae: perhaps the next culture attempt with
different conditions will allow growth (for so far unculturable
organisms) or growth with a contribution from external organic
carbon (for obligate photoautotrophs). However, for the moment
at least there are obligately photolithotrophic algae (Raven
2012). It is important to note that the obligate photoautotrophy
does not preclude the assimilation of exogenous organic
compounds, just their involvement in growth (Raven 2012). A
final point about obligate photoautotrophy is that technical
complications mean that it is not readily tested for
embryophytic, and especially vascular plants.

An endocytosis-like uptake of protein by the planktonic
heterotrophic planctomycete bacterium Gemmata
obscuriglobus was recently reported (Lonhienne et al. 2010).
This process is probably not involved in mixotrophy in
anoxygenic photosynthetic bacteria, since the planctomycetes

have a uniquely complex cell structure for a bacterium, and no
planctomycete is known to have photosynthesis (Fuerst et al.
1993). However, a planctomycete contains proteorhodopsin
(McCarren and DeLong 2007), so the endocytosis-like means
of protein uptake could be involved in this variant onmixotrophy.
In summary, the categorisation of autotrophic phytoplankton and
heterotrophic microzooplankton does not account for the dual
mode of nutrition and warrants revision of the dichotomous
concept (Flynn et al. 2013).

A related process, which overlaps with mixotrophy
phylogenetically and functionally, is auxotrophy – the inability
of some algae to make all enzyme cofactors known as vitamin in
metazoan nutrition. The most widespread vitamin requirement is
that of cobalamin (vitamin B12), with 155 of the 306 algae
examined needing an external supply of vitamin B12 (Croft
et al. 2006). Where the vitamin B12 auxotrophs are also
phagomixotrophs the prey is presumably a source of the
vitamin, bearing in mind that only archaea and bacteria are
able to synthesise vitamin B12. Auxotrophic algae that are not
phagomixotrophs must obtain the vitamin from associated
bacteria or archaea or from the growth medium. Vitamin B12

dependence comes about from loss of an alternative, vitamin
B12-independent, pathway of methionine synthesis (Helliwell
et al. 2011). For other vitamins, auxotrophy comes about from
loss of the capacity to synthesise the vitamin. Since embryophytic
plants have no known requirement for exogenous vitamins, the
assumption is that they evolved from a charophycean green alga
with no requirements for exogenous vitamins. This is the most
economical hypothesis, but it does not rule out the alternative of
an auxotrophic algal ancestor with subsequent horizontal gene
transfer that overcame the need for external vitamins.

Mixotrophy has been a recent focus of phytoplankton research
(e.g. Bronk et al. 2007; Gómez-Baena et al. 2008; Zubkov et al.
2008; Poretsky et al. 2010; Flynn et al. 2013), and photosynthetic
plants are also investigated for their ability to satisfy energy and
nutritional needs with organic carbon (C) compounds. An
obvious parallel to algal phagomixotrophy in green plants is
the carnivorous mode of nutrition (Fig. 2; Raven et al. 2009).We
do not consider carnivorous angiosperms in detail here, but note
that they are photosynthetic (Juniper et al. 1989; Raven et al.
2009; Król et al. 2012), can take up organic C in amino acids and
peptides via transporters (Schulze et al. 1999) andvia endocytosis
(Adlassnig et al. 2012), but have a significant C cost in trap
construction and maintenance and in enzyme secretion (Ellison
and Adamec 2011; Sirová et al. 2011).

Another variant on mixotrophy is the mycoheterotrophy in
photosynthetically competent plants. It was originally thought
that mycoheterotrophy only occurs in specialist achlorophyllous
plants that obtain all their C andN frommycorrhizal fungi (Leake
2004;Leake andCameron2010).More recently itwas discovered
that some green orchids are mixotrophs, gaining organic C and N
via a combination of mycoheterotrophy and photosynthesis
(Fig. 2; reviewed by Selosse and Roy 2009). Substantial
fungus-mediated mixotrophy occurs in the photosynthesising
ericaceous tribe Pyroleae (Tedersoo et al. 2007) and the orchid
Cephalanthera damasonium (Julou et al. 2005)with an estimated
10–67% of carbon obtained from fungal partners. Selosse and
Roy (2009) draw analogies between mixotrophy of plants and
algae, and suggest that partial mycoheterotrophy may be more
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common in light-limited environments than currently
acknowledged. The authors also highlight the dearth of
knowledge of cellular mechanisms enabling the transfer of
nutrients between fungi and partially mycoheterotrophic plants.

Analogous to mycoheterotrophy by photosynthetically
competent plants, but without a fungal link, is hemiparasitism
(Fig. 2;Marshall andEhleringer 1990). Here a photosynthetically
competent vascular (usually angiosperm) plant obtains all water
and nutrient elements which cannot be supplied by its own
photosynthesis from another (usually angiosperm) vascular
plant (Raven 1983). Hemiparasites are generally linked
exclusively to the host xylem and acquire N mostly as organic
N as all root-acquired, including organic N, ammonium and N2

fixed by root nodules or rhizothamnia, move in the xylem as
organic N, although only nitrate and most P move as inorganic
constituents (Raven 1983). Acquisition of organic C and N by
hemiparasites from the xylem stream of the host involves the
parallel acquisition of two ormore atoms of organic C per atomN
when dicarboxylic amino acid and their amides are the form in
which N is moved, and one C per N (with not all C recoverable as
organic C), when ureides such as allantoin are the main N
transport molecules.

Mixotrophy is deemed the exception in terrestrial plants,
excepting carnivorous, partial mycoheterotrophic or hemi-
parasitic plants, but a recent study using 13C-labelled litter
showed that Quercus petraea trees in north-eastern France are
mixotrophic in spring (Bréda et al. 2013).

Organic nutrients as sources of essential nutrients
for plants

In recent decades it has been ‘rediscovered’ that nitrate and
ammonium are not the sole N sources for plants; early plant
nutrition researchers considered a surprising variety of organic
compounds as nutrient sources (reviewed by Paungfoo-

Lonhienne et al. 2012). Amino acids are present in soil, and
plants use or even prefer amino acids over other N forms (Chapin
et al. 1993; Chapin 1995; Näsholm et al. 1998; Schimel and
Bennett 2004), and amino acid transporters catalysing the uptake
of amino acids into roots have been identified (Hirner et al. 2006;
Lee et al. 2007; Svennerstam et al. 2007, 2011). The difficulties
associated with quantifying N conversions in soils, detecting
simultaneous uptake and release of N by soil and symbiotic
organisms and roots, and identifying the chemical form in
which N is acquired by plants have prevented unequivocal
assessment of the contribution of organic N to the plants’ N
uptake (reviewed by Näsholm et al. 2009). Ecological and
physiological studies have evaluated amino acids for their role
as organic N and C sources, but debate continues as to whether
these compounds are generated at sufficient rates in soil to be
significant N sources, and whether plants can compete with
microbes for their uptake. Larger organic N compounds in
soils include peptides and proteins. Membrane transporters
catalysing the uptake of di- and tri-peptides into roots have
now been identified (Komarova et al. 2008). It has been
suggested that use of peptides as N and C source contributes
to the success of the endemic angiosperm Deschampsia
antarctica with increasing temperatures on the Antarctic
Peninsula (Hill et al. 2011). We found that green fluorescent
protein enters root hairs and supplements inorganic N in low-N
supplied Arabidopsis but have not identified the mechanisms
that permit such uptake (Paungfoo-Lonhienne et al. 2008).

Experimental and technical innovations are advancing
knowledge on organic nutrients and include microdialysis as
tool to quantify N flux via passive diffusion (Inselsbacher and
Näsholm 2012). Soil microdialysis showed that amino acids
account for 80% of the soil N supply in undisturbed boreal
forest soil, whereas conventional extraction techniques
detected inorganic N as the dominant soil N form.
Microdialysis and analysis of a larger range of soil organic

Dionaea muscipula Korthalsella lindsayi

Carnivory Myco-heterotrophy Hemi-parasitism

Corallorhiza trifida

Fig. 2. Acknowledged mixotrophic strategies of green plants. Animal prey, fungi or host plants provide organic nutrients to
carnivorous, partially myco-heterotrophic and hemiparasitic photosynthesing plants (photograph courtesy of Jeremiah Harris,
Leilani Nepenthes, Colorado Springs CO (Dionaea muscipula), Eleanor Saulys and the Connecticut Botanical Society
(Corallorhiza trifida), and John Barkla, NZ Plant Conservation Network (Korthalsella lindsayi) and reproduced with
permission.
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compounds have great potential to improve knowledge of N
and other nutrients (Inselsbacher et al. 2011; Warren 2013), as
widely used soil extraction methods were established to identify
fertiliser needs in agriculture focussed on inorganic nutrients.
Promising techniques include high resolution research
techniques of soil, roots and soil microorganisms including
confocal and nano-SIMS imaging with fluorescent and stable
isotope labelled N compounds (Paungfoo-Lonhienne et al.
2008; Clode et al. 2009; Whiteside et al. 2009; Kilburn et al.
2010).

Similar questions as for N arise about the role of organic P
for plant nutrition. Inorganic P (orthophosphate, Pi) is considered
the main source for plants and is acquired via membrane
transporters (Mudge et al. 2002; Smith et al. 2003). Organic P
forms are generally considered unavailable for plant uptake, but
have been more recently investigated as sources for plants. As
discussed above, exoenzymes cleaving phosphate esters have
been described in several plants species, and the ability of
axenically cultivated Arabidopsis and wheat to grow with
nucleic acid and other organic P forms as sole P sources was
thought to bedue to exudedDNAases, phytases andphosphatases
(Chen et al. 2000; Richardson et al. 2000). We showed that
organic P consisting of 25-nucleotide DNA, that was protected
from enzymatic degradation, entered root cells (Fig. 3; Paungfoo-
Lonhienne et al. 2010a), indicating that organic P compounds
can enter roots. So far there have beenno reports that angiosperms
can use the uptake system of some cyanobacteria and certain
other bacteria which acquire and then cleave organic
phosphonates (Dyhrman et al. 2006).

Possible mechanisms of the uptake of large organic
compounds into roots
Adding to the uncertainties of the role of organic nutrients is
the scant mechanistic understanding of how large organic
compounds enter roots. The membrane-spanning proteins that
catalyse selective passage of ions or molecules across the plasma
membrane cannot transport large macromolecules such as
proteins, polynucleotides or polysaccharides. Eukaryotic cells
ingest macromolecules via endocytosis by progressively
enclosing the substance in a section of the plasma membrane,
followed by invagination and pinching off to form an intracellular
vesicle containing the ingested substance (Alberts et al. 1989).
Endocytosis retrieves membrane material and associated cargo
from the plasma membrane for internal utilisation or destruction,
and for processing and recycling to the plasma membrane
(Robinson 2005). Endocytosis is common to all eukaryotes
and enabled by cytoskeleton-forming proteins, but was
thought not to occur in prokaryotes due to missing cellular
components and thick and rigid cell walls. However, uptake of
proteins by bacteriumGemmata obscuriglobus (Planctomycetes)
occurs as an energy-dependent process analogous to eukaryotic
endocytosis (Lonhienne et al. 2010), and some bacteria
incorporate other bacteria as endosymbionts (McCutcheon and
von Dohlen 2011).

Endocytosis serves multiple purposes in plants including
membrane recycling, protein transport, cell-to-cell
communication, cell signalling and cell wall morphogenesis
(Holstein 2002; Šamaj et al. 2004; Šamaj et al. 2005; Geldner
and Jurgens 2006). The role of endocytosis for nutrient uptake

Soil
microbes

Plants

Polymers Oligomers Monomers Inoganic
molecules & ions

Fig. 3. Proposed scheme of plant nutrient sources in which soil microbes and root-derived enzymes contribute
to depolymerisation and mineralisation of organic matter, and plants acquire not only inorganic nutrients directly
and organic nutrients indirectly via mycorrhizal symbionts, but also take up a suite of organic compounds and
microbes (modified from Paungfoo-Lonhienne et al. 2012).
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remains a controversial topic. In the 1960s pinocytosis, a type of
endocytosis that involves invagination of the plasma membrane
around a fluid phase and subsequent formation of a small versicle
within the cytoplasm, was considered by some researchers as a
main route of entry of nutrients into root cells (Jensen and
McLaren 1960; Bradfute et al. 1964; Bradfute and McLaren
1964; reviewed by Cram 1980). Cram (1980) critically reviewed
this hypothesis, pointing out major problems such as the required
implausibly high density of selective binding sites in the
membrane and the thermodynamic and mechanistic difficulties
of creating a fluid-filled spaces by invagination of the
plasmalemma in a turgid plant cell. The points raised by Cram
(1980) were reiterated and developed by Raven (1987) and
Robinson et al. (2008). However, FM dyes, the most reliable
endocytosis tracer (Emans et al. 2002; Bolte et al. 2004), have
unequivocally demonstrated that plant cells perform endocytosis
(Emans et al. 2002) and contain endosomes (Geldner 2004;Voigt
et al. 2005). Membrane internalisation in plant cells occurs
principally via clathrin-coated vesicles similar to most animal
cells (Pérez-Gómez and Moore 2007). Even though the analysis
of the Arabidopsis genome has revealed considerable
conservation of components of the endocytotic machinery
among eukaryotes, endocytosis research in plants has lagged
behind that of animals. A proposed reason has been the lack of
obvious candidates for endocytotic cargo molecules (Robinson
et al. 2008).

There is evidence for a vesicle-mediated transport system
between vacuole and plasma membrane (Echeverria 2000).
Internalised lucifer yellow, an endocytosis marker, occurs in
transition zone cells of the inner cortex of intact maize root
apices indicating that large molecules are transported across
cortex cells (Baluska et al. 2004, who acknowledged that
results from the use of lucifer yellow can be compromised by
the occurrence of carrier-mediatedmovement of this tracer across
plant membranes). That larger molecules enter roots via
endocytosis has long been proposed as exogenously supplied
macromolecules such as DNA were detected in roots (reviewed
by Paungfoo-Lonhienne et al. 2012). Sucrose and glucose enter
cells by membrane transporters (Sauer 2007) and are also
incorporated into intact walled plant cells via endocyctosis
(Etxeberria et al. 2005a, 2005b). Endocytosis and an
additional unknown mechanism have been proposed to
facilitate entry of peptides into walled plant cells (Eggenberger
et al. 2011).

It was assumed that carnivorous plants first digest organic
compounds in animal-catching organs such as pitchers into
inorganic and smaller organic compounds (amino acids,
peptides), before transport into plant cells by membrane
transporters (Schulze et al. 1999). Recently, endocytosis was
identified as a mechanism facilitating entry of proteins into
tissues of carnivorous plants. Proteins are absorbed by
endosomes which fuse with primary lysosomes which results
in larger compartmentswhere degradation takes place (Adlassnig
et al. 2012). Endocytosis also plays an integral role in the
endocytic uptake of Rhizobium bacteria in legume roots,
involving internalisation into plant cells (reviewed by Brewin
2004).

Microbes occur in much higher density in the rhizosphere
than bulk soil and are attracted by root-derived compounds and

debris, and it is conceivable that plants acquire and digest
microbes as sources of nutrients. We tested this possibility and
presented the first evidence that root cells incorporate non-
pathogenic and non-symbiotic microbes as nutrient sources
(Fig. 3; Paungfoo-Lonhienne et al. 2010b). As microbes
compete with plants for soil nutrients, uptake and digestion of
microbes could be an adaptation for securing nutrients
(Paungfoo-Lonhienne et al. 2010b).

Effect of organic nutrients on root morphology

It is possible that the effects of external organic compounds on
root function are related to mixotrophy. For example, organic
compounds that trigger increased root branching by increasing
the number of root tips and extent of root hair production, may
stimulate processes that rely on the presence of these structures
especially nutrient uptake. Indeed, the observed effects of organic
polymers on root morphogenesis include enhanced root
branching and root hair growth (Fig. 4) and are congruent with
the notion that organic polymers facilitate root proliferation in
sites that are rich in organic matter (Paungfoo-Lonhienne et al.
2008; Paungfoo-Lonhienne et al. 2010a).

An extension of the root system allows exploration of soil for
the continued absorption of inorganic and organic nutrients. The

500 µm

–protein +protein

Fig. 4. Addition of protein to nutrient-replete axenic growth medium
enhances the thickness of lateral roots and length of root hairs. Wild-type
Arabidopsisplants (Columbia0)weregrown for 17dayson0.5�MSmedium
(Murashige and Skoog 1962) with or without protein added (330mg bovine
serum albumen mL–1 growth medium; TGA Lonhienne, D Rentsch,
T Näsholm, S Schmidt, C Paungfoo-Lonhienne, unpubl. data).

Photosynthetic plants as a mixotroph Functional Plant Biology 431



effect of inorganic nutrients on root morphology depends on the
nutrient solute and its concentration. For example, supply of
ammonium stimulates lateral root initiation and higher-order
lateral root branching, while nitrate stimulates lateral root
elongation (Forde and Walch-Liu 2009; Lima et al. 2010).
Although there is a vast literature on the quantitative effects of
inorganic nutrients on root growth andmorphology (reviewed by
Hermans et al. 2006), much less is known about the effects of
organic forms on these characteristics. Amino acids and peptides
alter root morphology and biomass, root length, thickness,
surface area and root hairs (Walch-Liu et al. 2006a, 2006b;
Cambui et al. 2011; Soper et al. 2011), providing indirect
evidence that root structure and uptake of these compounds
may be linked. Extension of the root system is particularly
important for the acquisition of less mobile and less soluble
nutrients such as most P-compounds (Bates and Lynch 1996).
Root hairs have a large effect on the uptake of P-compounds as
evidenced bymorphologically different root hairs of crop species
and varieties and their P-compound acquisition. Length and

surface area of root hairs were significantly correlated with the
depletion of P-compounds in the rhizosphere in low P growth
condition (Bates and Lynch 1996; Gahoonia and Nielsen 1996;
Gahoonia et al. 1997; Ma et al. 2001). Long root hairs are
considered a beneficial trait for sustaining crop yields in low P
soil (Gahoonia and Nielsen 2004). Although root hairs are under
genetic control, their growth is modulated by environmental
conditions. Increased root hair length under P-limitation is an
adaptation that aids P-compound acquisition. Root colonisation
with arbuscular mycorrhizal fungi is more pronounced in species
and genotypes that have few or short root hairs (Smith and Read
2008).Root hair length increased in thepresenceofDNAinplants
grown in P-replete medium (Paungfoo-Lonhienne et al. 2010a),
pointing to a role of organic compounds as signalling agents.
Similarly, phytate as a P source in axenic growth conditions
increased root growth but dramatically decreased shoot growth
(Richardson et al. 2000). The responsiveness of plants to organic
compounds can be interpreted as a further indicator for their
involvement in plant nutrient relations.

20 µm

(a) (b)

(d)(c)

50 µm

100 µm 20 µm

Fig. 5. Confocal laser scanning microscopy images of roots incubated with fluorescent protein,
DNA andmicrobes. (a) Green fluorescent proteinwithArabidopsis roots (Paungfoo-Lonhienne et al.
2008) (the copyright notice), (b) fluorescent-labelled DNA with Arabidopsis roots (Paungfoo-
Lonhienne et al. 2010a) (www.plantphysiol.org, Copyright American Society of Plant Biologists,
accessed 9 January 2013) and (c) yeast cells expressingGFP in roots of tomato (Paungfoo-Lonhienne
et al. 2010b) (the copyrightnotice). (d) EGFP-taggedPseudomonasputidaPICP2colonisedolive root
hairs (Mercado-Blanco and Prieto 2012) (reprinted from Plant and Soil, Vol. 361, p. 303, 2012 with
permission of Springer).
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Do root hairs provide a path for large molecule
into roots?

Root hairs are specialised epidermal cells and the outermost
interface between roots and soil. Root hairs can constitute up
to 70% of the root surface. They are tip-growing extensions
originating from root epidermal cells, so-called trichoblasts,
which play an important role in water and nutrient uptake
(reviewed by Datta et al. 2011). Root hairs are the major site
of inorganic P uptake (Pi, phosphate) (Gahoonia and Nielsen
1998) containing the high affinity phosphate transporters
responsible for Pi uptake (Mudge et al. 2002; Schunmann
et al. 2004), and transporters for ammonium and nitrate
(Lauter et al. 1996).

Tip growth in plant cells is an actin-based process that requires
targeted exocytosis and compensatory endocytosis to occur at
the growth cone and involves polarised membrane trafficking
and the presence of endosomal compartments at the tip of root
hairs (Ove�cka et al. 2005; Voigt et al. 2005). Endocytosis occurs
at the tip of growing root hairs and subsequent trafficking of
the incorporated membrane. Mercado-Blanco and Prieto (2012)
speculated that this process facilitates passive entry of bacteria
into root hairs. Root hairs of N2 fixing species facilitate the
endophytic colonisation of roots, and recent studies indicate
that root hairs of non-N2 fixing angiosperm incorporate
microbes (Fig. 5d; Prieto et al. 2011; Mercado-Blanco and
Prieto 2012). Our research indicates that uptake of protein,
DNA and microbes appears to be restricted to root-hair-
producing trichoblasts (Paungfoo-Lonhienne et al. 2008,
2010a, 2010b) (Fig. 5a–c). These observations support the
argument that root hairs are one of the entry routes of large
molecule into root cells.

Conclusions

Mixotrophy is currently considered an exception in higher plants,
and restricted to carnivorous, hemi-parasitic and partially hetero-
mycotrophic species. However, similar to other mixotrophic
organisms, notably phytoplankton, plants seem to be able to
complement photosynthetic energy gain with essential
elements from organic compounds and microbes. Although the
contribution of organic carbon is likely to be less important for
plants that are not light-limited, organic N and P compounds
could supplement essential elements acquired as inorganic
compounds. Knowledge of whether mixotrophy is important
for plants only in certain ecosystems or whether it is a more
general feature of plants is lacking. Similar to the uncertainty
surrounding organic C fluxes in the rhizosphere (Jones et al.
2009), we have little quantitative information on how much
organic versus inorganic N and P compounds contribute to
plant nutrition. In semi-controlled growth conditions, several
studies have shown a preference of plants for organic N
monomers over inorganic N (e.g. Stoelken et al. 2010).
Similarly, in highly artificial axenic growth conditions,
Arabidopsis satisfied ~10% of N demand with protein
(Paungfoo-Lonhienne et al. 2008). A knowledge gap remains
in our understanding of how microbes, especially procaryotes,
act in the rhizosphere, apoplast and as root endophytes. The
rapid advances in microbial research will shed light into these
questions, and more powerful analyses techniques will decipher

the chemical nature and fluxes of organic compounds at much
finer resolution than what has been possible in the past.

Approaches that span from molecular to ecological
techniques, the use of mutants, sophisticated microscopy and
modelling can be used to address the questions raised here. We
argue that a new framework that considers plants as mixotrophs
has numerous benefits including advancing the sustainable use of
soils and efficient nutrient supply to plants with nutrients
contained in organic materials. This is pertinent as the use of
fertilisers is accelerating, much of which is applied as inorganic
substances (or in the case of urea is rapidly converted to
inorganics), and nutrient inefficiencies characterise many
modern crop systems (Tilman et al. 2002; Davidson et al.
2012). Illustrating the dramatic discrepancy in fertiliser use is
food production in China that increased 3.4-fold from 1961 to
2009, but was accompanied by 37- and 91-fold increases in N
and P fertiliser application (Zhang et al. 2013). The resultant
pollution is a problem of global significance (Gruber and
Galloway 2008), motivating research and development on
improving nutrient supply, uptake and assimilation by plants.
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Glossary

Autotroph: organism using light (phototroph) or electron donor (chemotroph) as energy and CO2 as carbon sources, and
inorganic compounds of all other required elements. In the text, ‘autotroph’ implies ‘photoautotroph’

Auxotroph: organism which has a requirement for an external source of one or more vitamins

Heterotroph: organism without ability to photosynthesise (or undertake chemolitho-autotrophy) and using only organic
carbon sources (plus anaplerotic rather than autotrophic CO2 assimilation)

Kleptoplasty: retention of functional plastids from incorporated food sources by phagotroph algae

Mixotroph: autotrophic (photosynthesising) organism also acquiring organic sources of carbon (heterotrophy)

Obligate autotroph: an autotrophic organism which receives no nutritional benefit (in terms of growth rate) from any
organic matter acquired by osmotrophy.

Osmotrophy: organism which takes up external solutes across the plasmalemma on a molecule by molecule basis.

Phagotroph: organism which engulfs smaller organisms as nutrient sources

Endocytosis: a process in eukaryotes and a planktomycete bacterium by which extracellular material such as
macromolecules is incorporated into cells via a membrane trafficking system.

Phagocytosis (‘cell eating’): endocytic processes that internalise particulate phases

Pinocytosis (‘cell drinking’): endocytic processes that internalise fluid phases
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