CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop and Pasture Science   
Crop and Pasture Science
Journal Banner
  Plant Sciences, Sustainable Farming Systems & Food Quality
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Current Issue
Just Accepted
Virtual Issues
All Issues
Special Issues
Research Fronts
Farrer Reviews
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Farrer Reviews
blank image

Invited Farrer Review Series. More...

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 51(6)

Grain protein and grain yield of durum wheats from south-eastern Anatolia, Turkey

M Koç, C. Barutçular and N. Zencirci

Australian Journal of Agricultural Research 51(6) 665 - 671
Published: 2000


High grain protein in durum wheat [Triticum turgidum ssp. turgidum L. conv. Durum (Desf.)] is one of the main goals of breeding programs. Landraces may be very useful germplasm for achieving this goal. To examine their potential as a source of high grain protein content, 11 genotypes, including 7 landraces, were evaluated in 8 environments.

Environment, genotype, and the interaction of the two (G E) significantly influenced the variation in grain yield, grain protein content, and grain protein yield. The environmental effect was the strongest, mostly due to differences in water supply. Grain yields of the modern genotypes were higher than those of landraces. Yields of the modern genotypes tended to respond more strongly to the higher yielding environments, but they varied more than the yields of landraces. With the exception of VK.85.18, the grain protein content of the high-yielding genotypes was almost as high as that of the best landraces. Moreover, grain protein content of these bred genotypes tended to respond more strongly to the higher protein environments. Differences in grain protein yield were closely related to the differences in grain yield.

The results indicate that it is possible to improve grain protein content without grain yield being adversely affected. The results also indicate that potential gene sources should be compared over a number of environments before they can be used as breeding material or as crop varieties producing high grain protein yields.

Keywords: Durum landraces, grain protein content, genotype environment interaction, Triticum turgidum ssp. turgidum L. conv. Durum (Desf.).

Full text doi:10.1071/AR97126

© CSIRO 2000

blank image
Subscriber Login

PDF (120 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016