CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop and Pasture Science   
Crop and Pasture Science
Journal Banner
  Plant sciences, sustainable farming systems and food quality
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Farrer Review Series
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 50(8)

Reducing rumen methane emissions through elimination of rumen protozoa

R. S. Hegarty

Australian Journal of Agricultural Research 50(8) 1321 - 1328
Published: 1999


Methanogens living on and within rumen ciliate protozoa may be responsible for up to 37% of the rumen methane emissions. In the absence of protozoa, rumen methane emissions are reduced by an average of 13% but this varies with diet. Decreased methane emissions from the protozoa-free rumen may be a consequence of: (1) reduced ruminal dry matter digestion; (2) a decreased methanogen population; (3) an altered pattern of volatile fatty acid production and hydrogen availability; or (4) increased partial pressure of oxygen in the rumen. The decline in methanogenesis associated with removal of protozoa is greatest on high concentrate diets and this is in keeping with protozoa being relatively more important sources of hydrogen on starch diets, because many starch-fermenting bacteria do not produce H2. Because protozoa also decrease the supply of protein available to the host animal, their elimination offers benefits in both decreasing greenhouse gas emissions and potentially increasing livestock production. Strategies for eliminating protozoa are reviewed. None of the available techniques is considered practical for commercial application and this should be addressed.

Keywords: Ciliates, methanogens, symbiosis, ruminal, defaunation, hydrogen.

Full text doi:10.1071/AR99008

© CSIRO 1999

blank image
Subscriber Login

PDF (113 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016