CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop & Pasture Science   
Crop & Pasture Science
Journal Banner
  Plant Sciences, Sustainable Farming Systems & Food Quality
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Farrer Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Farrer Reviews
blank image

Invited Farrer Review Series. More...


red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 51(1)

Effect of seed zinc content on early growth of barley (Hordeum vulgare L.) under low and adequate soil zinc supply

Yusuf Genc, Glenn K. McDonald and Robin D. Graham

Australian Journal of Agricultural Research 51(1) 37 - 46
Published: 2000

Abstract

Worldwide, barley is often grown on zinc (Zn) deficient soils. Screening for varieties tolerant of low soil Zn (Zn-efficient varieties) generally involves assessing growth or yield of plants grown at different levels of Zn supply. Seed nutrient reserves can influence the growth of the plant; however, there have been no reports on the effect of seed Zn content on the growth of barley. In 2 experiments, we studied the effect of seed Zn content on early growth of barley in 2 genotypes, Amagi Nijo and Tantangara. In Expt 1, the amounts of Zn in the seed ranged from 0.4 to 0.7 µg/seed, whereas in Expt 2, seed Zn ranged from 0.7 to 5.0 µg/seed. The plants were grown in a Zn-deficient siliceous sand with Zn added at 0, 0.04, 0.2, 0.8, and 3.2 mg Zn/kg soil in Expt 1 and at 0, 0.04, and 0.8 mg Zn/kg soil in Expt 2, and harvested at tillering. Growth and expression of visual symptoms were measured.

Plants grown from seed with low Zn content developed symptoms of Zn deficiency by the 2-leaf stage in soil with no soil-applied Zn. Symptoms were reduced markedly as seed Zn content increased. Shoot and root growth increased as the amount of Zn in seed increased, but the effect was most evident when soil Zn supply was limiting plant growth (≤0.04 mg Zn/kg soil). For instance, when no Zn was added to the soil, shoot dry weight of plants grown from high-Zn seed was 108% greater than that of plants grown from low-Zn seed, whereas at 0.04 and 0.8 mg Zn/kg soil, the increases were only 52% and 18%, respectively. Soil Zn application significantly increased tissue Zn concentrations. However, the effect of seed Zn content on tissue Zn concentrations was significant only at very high levels of seed Zn. The results presented showed that seed Zn improves vegetative growth in barley, especially when Zn supply is deficient for plant growth. Seed Zn content also affected the determination of Zn efficiency of genotypes, and comparisons of dry matter production of seedlings grown from seed with a wide range in Zn content may alter their rankings for Zn efficiency as determined in this pot assay. The results indicate that seed of similar Zn content needs to be used when comparing genotypes for determination of Zn efficiency.

Keywords: Zn deficiency, Zn efficiency.



Full text doi:10.1071/AR99045

© CSIRO 2000

blank image
Subscriber Login
Username:
Password:  

 
PDF (177 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014