CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern hemisphere botanical ecosystems
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article     |     Next >>   Contents Vol 49(2)

Soil and rainforest composition in Tasmania: correlations of soil characteristics with canopy composition and growth rates in Nothofagus cunninghamii associations

Jennifer Read

Australian Journal of Botany 49(2) 121 - 135
Published: 2001


The relationships between soil chemistry and canopy composition and growth rate were examined in several Nothofagus cunninghamii rainforest associations. There was considerable variation in the concentrations of some of the soil nutrients, with c. 40-fold differences in total phosphorus among surface samples (5–15 cm depth) and 170-fold differences among deep samples (50–60 cm depth). Principal components analysis with rotated axes indicated that surface extractable K, total N and loss of ignition (LOI) contributed most to Component 1. The factors contributing most to Component 2 were total exchangeable bases, extractable Mg and LOI of the deep samples and surface extractable Ca. Total phosphorus (surface and deep), pH and surface C: N contributed most to Component 3. The soils of N. cunninghamii-dominated forests had significantly higher pH and total phosphorus than mixed rainforests (rainforest without a clear dominant species) and a lower C: N ratio than soils of both mixed rainforests and P. aspleniifolius-dominated rainforests (P < 0.05). However, no significant differences were recorded in any soil parameter between the latter two forest types. Factor 3 of the PCA was positively correlated with the abundance of N. cunninghamii and negatively correlated with abundance of P. aspleniifolius and E. lucida (P < 0.05). In addition, the growth rate of N. cunninghamii was positively correlated with total phosphorus after removal of high-altitude sites (≥700 m a.s.l.). These results, together with previous data on comparative growth rates, suggest that phosphorus has a significant influence on the canopy composition of these rainforests via its effect on the growth rate of N. cunninghamii. Concentrations of both total and available phosphorus were very low on some sites, overlapping the range of values recorded in button grass plains, heaths and eucalypt forests from other studies in Tasmania. More comprehensive data are required to allow detailed comparisons among these vegetation formations. However, the results are consistent with Jackson’s (1968, 1983) hypothesis that the absence of rainforest from some low-nutrient soils may be influenced more by fire frequency (via the interactions among soil nutrients, vegetation and fire) than directly by soil nutrients.

Full text doi:10.1071/BT00016

© CSIRO 2001

blank image
Subscriber Login

PDF (888 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016