CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 49(6)

Wall ultrastructure and cytochemistry and the longevity of pollen of three grass species

Jian-Hua Fu, Li-Gong Lei, Liang-Bi Chen and Guan-Zhou Qiu

Australian Journal of Botany 49(6) 771 - 776
Published: 01 December 2001


The ultrastructures and cytochemistry of pollen grains with different longevities of three grass species, rice (Oryza sativa L.), maize (Zea mays L.) and pennisetum (Pennisetum alopecuroides Spreng.), were studied by transmission electron microscopy. The pollen wall of rice is the thinnest and that of pennisetum the thickest. The exine of rice pollen grains is loose and porous with communication channels, or microchannels, and thick columellae, but that of pennisetum pollen grains is very dense and nearly without microchannels and columellae. The tectum of pennisetum pollen wall is also the thickest of the three species. In the pollen walls of rice and maize, the microchannels traverse the tectum and foot layer. The exinous microchannels are slightly more abundant in rice pollen wall than in pennisetum pollen wall and the intines of the pollen walls of rice and pennisetum have higher electron densities than that of maize. In rice pollen wall glucose-6-phosphate dehydrogenase (G6PD) and succinate dehydrogenase (SDH) are located in the exine, mainly on the surface, along the microchannels and in the spaces between columellae, and in the intine. However, they occur mainly in the intine of maize pollen wall and on the surface of pennisetum pollen wall. Under natural conditions, rice’s thinnest pollen wall with richer exinous microchannels, G6PD and SDH, appears to be related to the short life of the pollen grains, while the opposite characteristics of pennisetum pollen grains are associated with greater longevity.

Full text doi:10.1071/BT00085

© CSIRO 2001

blank image
Subscriber Login

PDF (3 MB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015