CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article     |     Next >>   Contents Vol 48(2)

Influence of season, drought and xylem ABA on stomatal responses to leaf-to-air vapour pressure difference of trees of the Australian wet-dry tropics

D. S. Thomas, D. Eamus and S. Shanahan

Australian Journal of Botany 48(2) 143 - 151
Published: 2000

Abstract

This paper reports the results of two experiments undertaken to investigate the influence of season and soil drying on stomatal responses to leaf-to-air vapour pressure differences. We examined the response of stomatal conductance to increasing leaf-to-air vapour pressure difference, in the wet and dry seasons, of five tropical tree species. We also examined leaves of these species for anatomical differences to determine whether this could explain differences in stomatal sensitivity to leaf-to-air vapour pressure differences. Finally, we conducted a split-root experiment with one of those species to look for interactions between xylem abscisic acid concentration, predawn water potential, leaf area to root mass ratio and stomatal responses to leaf-to-air vapour pressure differences.

Stomatal conductance declined linearly with increasing leaf-to-air vapour pressure difference in all species. Leaves that expanded in the ‘dry’ season were more sensitive to leaf-to-air vapour pressure differences than those that had expanded in the ‘wet’ season. The value of leaf-to-air vapour pressure difference where 50% of extrapolated maximum stomatal conductance would occur was 5.5 kPa for wet season but only 3.4 kPa for dry season leaves. In the wet season, transpiration rate increased with increasing leaf-to-air vapour pressure difference in most example species. However, in the dry season, transpiration was constant as leaf-to-air vapour pressure differences increased in most cases. There were significant changes in the proportion of cell wall exposed to air space in leaves, between wet and dry seasons, in three of four species examined.

In the split-root experiment, a very mild water stress increased stomatal sensitivity to leaf-to-air vapour pressure differences, and stomatal conductivity declined linearly with decreasing predawn water potential. However, levels of ABA in the xylem did not change, and stomatal sensitivity to exogenous ABA did not change. The ratio of leaf area to root mass declined during water stress and was correlated to changes in stomatal sensitivity to leaf-to-air vapour pressure differences.



Full text doi:10.1071/BT98090

© CSIRO 2000

blank image
Subscriber Login
Username:
Password:  

 
PDF (568 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014