CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 28(6)

Root and shoot factors contribute to the effect of drought on photosynthesis and growth of the C4 grass Panicum coloratum at elevated CO2 partial pressures

Saman Seneweera, Oula Ghannoum and Jann P. Conroy

Australian Journal of Plant Physiology 28(6) 451 - 460
Published: 2001

Abstract

We examined the hypothesis that root and shoot factors influence growth responses to elevated CO2 of the C4 grass Panicum coloratum var. makarikiense cv. Bambatsi (NAD-ME malic enzyme subtype) when well watered and droughted. Plants were grown at CO2 partial pressures (pCO2) of 36 (ambient) and 100 Pa (elevated) in pot ed soil in growth chambers for 3 weeks with adequate water (day 0) before being subjected to 15 d of drought. At day 15, enhancement of shoot growth by elevated pCO2 was 70% under drought, and 44% when well watered. During the drought period, leaf CO2 assimilation rates (A) and stomatal conductance (g) (measured at 36 Pa CO2) declined after day 2, but the decline was faster at 36 Pa CO2, and by day 9, A was negligible and intercellular pCO2 had sharply increased compared with 100 Pa CO2. Changes in carbon metabolism and water relations occurred during drought and elevated CO2 generally delayed these changes. Leaf growth rates were higher at elevated CO2 at day 0 and during drought. Importantly, the decline in soil water content was slower at elevated pCO2 due to lower transpiration rates. This explained the slower decline in A, gand shoot water relations at elevated CO2 and indicates that root factors were responsible for their decline. In contrast, leaf growth rates were higher at elevated CO2, irrespective of soil water content. We conclude that both soil and leaf factors contribute to the greater growth response of P. coloratum to high CO2 under drought, and that reduced transpiration rates explains their enhanced growth.

Keywords: C4grasses, drought, elevated CO2, Panicum coloratum, photosynthesis, shoot growth water relations.



Full text doi:10.1071/PP01007

© CSIRO 2001

blank image
Subscriber Login
Username:
Password:  

 
PDF (203 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014