CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 29(3)

The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae

Brian Colman, I. Emma Huertas, Shabana Bhatti and Jeffrey S. Dason

Functional Plant Biology 29(3) 261 - 270
Published: 20 March 2002


Eukaryotic microalgae have developed CO2concentrating mechanisms to maximise the concentration of CO2 at the active site of Rubisco in response to the low CO2 concentrations in the external aquatic medium. In these organisms, the modes of inorganic carbon (Ci) uptake are diverse, ranging from diffusive CO2 uptake to the active transport of HCO3 -and CO2 and many have an external carbonic anhydrase to facilitate HCO3- use. There is unequivocal evidence for the mechanisms of Ci uptake in only about 25 species of microalgae of the chlorophyte, haptophyte, rhodophyte, diatom, and eustigmatophyte groups. Most of these species take up both CO2 and HCO3-, but the rates of uptake of each of these substrates varies with the algal species. A few species take up only one of the two forms of Ci, an adaptation that is not necessarily correlated with their ecological distribution. Evidence is presented for the active uptake of HCO3- and CO2 in two marine haptophytes,Isochrysis galbana Parke and Dicrateria inornata Parke, and for active transport of CO2 but lack of HCO3- uptake in two marine dinoflagellates, Amphidinium carteraeHulburt and Heterocapsa oceanica Stein.

Keywords: carbonic anhydrase, CO2 concentrating mechanism, CO2 transport, dinoflagellates, haptophytes, HCO3- transport.

Full text doi:10.1071/PP01184

© CSIRO 2002

blank image
Subscriber Login

PDF (208 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015