CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 29(6)

Sucrose transport across the vacuolar membrane of Ananas comosus

Shelley R. McRae, John T. Christopher, J. Andrew C. Smith and Joseph A. M. Holtum

Functional Plant Biology 29(6) 717 - 724
Published: 28 June 2002

Abstract

This paper originates from a presentation at the IIIrd International Congress on Crassulacean Acid Metabolism, Cape Tribulation, Queensland, Australia, August 2001.

In Ananas comosus L. (Merr.) (pineapple), a widely cultivated bromeliad that exhibits crassulacean acid metabolism (CAM), much of the carbohydrate synthesized during the daytime appears to accumulate as soluble sugars in the vacuole. To investigate the mechanism of sugar transport into the vacuole, microsomal extracts were prepared from deacidifying leaves harvested during Phase III of the CAM cycle. The vesicle preparations exhibited features expected for a fraction highly enriched in vacuolar membranes (tonoplast), i.e. the ATPase activity of 16 ±¬†2¬†nkat mg-1 protein was inhibited 96% by 50 mm KNO3, an inhibitor of vacuolar ATPases, and was only 7% inhibited by 100μm NaN3 plus 100μm Na3VO4, inhibitors of mitochondrial and plasma membrane ATPases, respectively. Further, the microsomal ATPase activity showed a pH optimum between 7.0 and 8.0, typical of a vacuolar ATPase. When presented with Mg-ATP, vesicles established H+ gradients that could be maintained for at least 25 min. The vesicles were able to take up [14C]sucrose from an external medium. Sucrose uptake exhibited saturable kinetics with an apparent Km of 50 m sucrose and apparent Vmax of 171 ± 5 pkat mg-1 protein. Sucrose uptake was not dependent upon, nor stimulated by, Mg-ATP, suggesting that the mechanism of sucrose transport into the vacuole in A. comosus does not involve H+-coupled cotransport. However, the initial rates of sucrose uptake from the external medium were stimulated when vesicles were preloaded with sucrose. This trans-stimulation is consistent with characteristics expected for a sucrose uniporter capable of operating in an exchange mode. It is proposed that the accumulation of glucose and fructose in leaf vacuoles of Ananas during the light period involves at least two steps - transport of sucrose into the vacuole by a mechanism exhibiting characteristics of a sucrose uniporter, followed by cleavage of sucrose by a vacuolar acid invertase to form glucose and fructose.



Full text doi:10.1071/PP01227

© CSIRO 2002

blank image
Subscriber Login
Username:
Password:  

 
PDF (279 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016