CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 29(7)

Mitochondrial protein expression in tomato fruit during on-vine ripening and cold storage

Ruth C. Holtzapffel, Patrick M. Finnegan, A. Harvey Millar, Murray R. Badger and David A. Day

Functional Plant Biology 29(7) 827 - 834
Published: 26 July 2002


We have investigated the activity and abundance of a number of respiratory chain components in ripening and cold-treated tomato fruits (Lycopersicon esculentum L. Mill cvv. Moneymaker and Sweetie). Expression of the alternative oxidase (AOX) protein increased dramatically in both situations. Levels of the plant uncoupling protein (UCP) initially fell, but increased substantially in the later stages of ripening. In contrast, ATP synthase subunits and the COXII subunit of cytochrome oxidase decreased during ripening and increased slightly in response to cold stress. Other proteins involved in electron transport, tricarboxylic acid cycle function, chaperonin function, and membrane transport were also studied. These showed varying degrees of enhanced and depressed expression patterns. There were modest changes in whole fruit respiratory activities, and electron transport capacity of isolated mitochondria in response to these stimuli. However, respiratory control by ADP in the isolated mitochondria decreased as AOX capacity and abundance increased, indicating that although total respiration rates changed little, flux between the coupled and uncoupled pathways altered. The changes observed in AOX and UCP accumulation in tomato fruit that were vine-ripened were significantly different from post-harvest ripening patterns previously reported. The altered protein profiles are discussed in the context of on- and off-vine ripening and the potentially different roles of uncoupled respiration in each situation.

Keywords: climacteric, fruit ripening, mitochondria, respiration, tomato.

Full text doi:10.1071/PP01245

© CSIRO 2002

blank image
Subscriber Login

PDF (354 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016