CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

Now Online

Land Resources Surveys


 

Article << Previous     |     Next >>   Contents Vol 39(5)

Effect of application of bauxite residue (red mud) to very sandy soils on subterranean clover yield and P response

R. N. Summers, M. D. A. Bolland and M. F. Clarke

Australian Journal of Soil Research 39(5) 979 - 990
Published: 03 September 2001

Abstract

Bauxite residue (red mud) is the byproduct from treatment of crushed bauxite with caustic soda to produce alumina. When dried the residue is alkaline and has a high capacity to retain phosphorus (P). The residue is added to pastures on acidic sandy soils to increase the capacity of the soils to retain P so as to reduce leaching of P into waterways and so reduce eutrophication of the waterways.

This paper examines how red mud influences the effectiveness of P from single superphosphate for producing subterranean clover (Trifolium subterraneum) dry herbage, in the year of application and in the years after application (residual value). Red mud was applied at 0, 2, 5, 10, 20, and 40 t/ha and the P was applied at 0, 5, 10, 20, 40, 80, and 160 kg P/ha.

In the year of application and the year after application of red mud, dry matter yields were doubled on the soil treated with 20 t/ha of red mud compared with the untreated control. Improvements in production were initially greater in the red mud treatments than in the lime treatment (2 t lime/ha).

Red mud increased the maximum yield plateau for P applied in current and previous years. When P was applied to freshly applied red mud, more P needed to be applied to produce the same yield as the amount of red mud applied increased. Red mud increased soil pH, and the increases in yield are attributed to removing low soil pH as a constraint to pasture production. This initial need for higher amounts of fertiliser P when increasing amounts of red mud were applied may be due to increased P sorption caused by increased precipitation of applied P when the fertiliser was in close contact with the freshly alkaline red mud.

When P was freshly applied to red mud that had been applied to the soil 12 months ago, yield response and P content increased. This was attributed to the reduction in sorption of P due to red mud being neutralised by the soil and because sorption of P already present in the soil reduced the capacity of the red mud to sorb freshly applied fertiliser P. Residues of P in the soil and pH were also increased with application of red mud.

In the years after application of red mud and lime, relative to P applied to nil red mud and nil lime treatment, the effectiveness of fertiliser P applied to the red mud and lime treatments increased. This was so as determined using plant yield, P concentration in plant tissue, and soil P test.

Keywords: pasture production, soil amendment, eutrophication, lime alternative, heavy metals.



Full text doi:10.1071/SR97095

© CSIRO 2001

blank image
Subscriber Login
Username:
Password:  

 
PDF (555 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015